2021-05-22 22:08:19 -04:00

686 lines
20 KiB
C

/**
*
* \file m2m_crypto.c
*
* \brief WINC Crypto module.
*
* Copyright (c) 2016-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
/*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
INCLUDES
*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*/
#include "driver/include/m2m_crypto.h"
#include "driver/source/nmbus.h"
#include "driver/source/nmasic.h"
#ifdef CONF_CRYPTO
/*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
MACROS
*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*/
/*======*======*======*======*======*=======*
* WINC SHA256 HW Engine Register Definition *
*======*======*======*======*======*========*/
#define SHA_BLOCK_SIZE (64)
#define SHARED_MEM_BASE (0xd0000)
#define SHA256_MEM_BASE (0x180000UL)
#define SHA256_ENGINE_ADDR (0x180000ul)
/* SHA256 Registers */
#define SHA256_CTRL (SHA256_MEM_BASE+0x00)
#define SHA256_CTRL_START_CALC_MASK (NBIT0)
#define SHA256_CTRL_START_CALC_SHIFT (0)
#define SHA256_CTRL_PREPROCESS_MASK (NBIT1)
#define SHA256_CTRL_PREPROCESS_SHIFT (1)
#define SHA256_CTRL_HASH_HASH_MASK (NBIT2)
#define SHA256_CTRL_HASH_HASH_SHIFT (2)
#define SHA256_CTRL_INIT_SHA256_STATE_MASK (NBIT3)
#define SHA256_CTRL_INIT_SHA256_STATE_SHIFT (3)
#define SHA256_CTRL_WR_BACK_HASH_VALUE_MASK (NBIT4)
#define SHA256_CTRL_WR_BACK_HASH_VALUE_SHIFT (4)
#define SHA256_CTRL_FORCE_SHA256_QUIT_MASK (NBIT5)
#define SHA256_CTRL_FORCE_SHA256_QUIT_SHIFT (5)
#define SHA256_REGS_SHA256_CTRL_AHB_BYTE_REV_EN (NBIT6)
#define SHA256_REGS_SHA256_CTRL_RESERVED (NBIT7)
#define SHA256_REGS_SHA256_CTRL_CORE_TO_AHB_CLK_RATIO (NBIT8+ NBIT9+ NBIT10)
#define SHA256_REGS_SHA256_CTRL_CORE_TO_AHB_CLK_RATIO_MASK (NBIT2+ NBIT1+ NBIT0)
#define SHA256_REGS_SHA256_CTRL_CORE_TO_AHB_CLK_RATIO_SHIFT (8)
#define SHA256_REGS_SHA256_CTRL_RESERVED_11 (NBIT11)
#define SHA256_REGS_SHA256_CTRL_SHA1_CALC (NBIT12)
#define SHA256_REGS_SHA256_CTRL_PBKDF2_SHA1_CALC (NBIT13)
#define SHA256_START_RD_ADDR (SHA256_MEM_BASE+0x04UL)
#define SHA256_DATA_LENGTH (SHA256_MEM_BASE+0x08UL)
#define SHA256_START_WR_ADDR (SHA256_MEM_BASE+0x0cUL)
#define SHA256_COND_CHK_CTRL (SHA256_MEM_BASE+0x10)
#define SHA256_COND_CHK_CTRL_HASH_VAL_COND_CHK_MASK (NBIT1 | NBIT0)
#define SHA256_COND_CHK_CTRL_HASH_VAL_COND_CHK_SHIFT (0)
#define SHA256_COND_CHK_CTRL_STEP_VAL_MASK (NBIT6 | NBIT5 | NBIT4 | NBIT3 | NBIT2)
#define SHA256_COND_CHK_CTRL_STEP_VAL_SHIFT (2)
#define SHA256_COND_CHK_CTRL_COND_CHK_RESULT_MASK (NBIT7)
#define SHA256_COND_CHK_CTRL_COND_CHK_RESULT_SHIFT (7)
#define SHA256_MOD_DATA_RANGE (SHA256_MEM_BASE+0x14)
#define SHA256_MOD_DATA_RANGE_ST_BYTE_2_ADD_STP_MASK (NBIT24-1)
#define SHA256_MOD_DATA_RANGE_ST_BYTE_2_ADD_STP_SHIFT (0)
#define SHA256_MOD_DATA_RANGE_MOD_DATA_LEN_MASK (NBIT24 | NBIT25| NBIT26)
#define SHA256_MOD_DATA_RANGE_MOD_DATA_LEN_SHIFT (24)
#define SHA256_COND_CHK_STS_1 (SHA256_MEM_BASE+0x18)
#define SHA256_COND_CHK_STS_2 (SHA256_MEM_BASE+0x1c)
#define SHA256_DONE_INTR_ENABLE (SHA256_MEM_BASE+0x20)
#define SHA256_DONE_INTR_STS (SHA256_MEM_BASE+0x24)
#define SHA256_TARGET_HASH_H1 (SHA256_MEM_BASE+0x28)
#define SHA256_TARGET_HASH_H2 (SHA256_MEM_BASE+0x2c)
#define SHA256_TARGET_HASH_H3 (SHA256_MEM_BASE+0x30)
#define SHA256_TARGET_HASH_H4 (SHA256_MEM_BASE+0x34)
#define SHA256_TARGET_HASH_H5 (SHA256_MEM_BASE+0x38)
#define SHA256_TARGET_HASH_H6 (SHA256_MEM_BASE+0x3c)
#define SHA256_TARGET_HASH_H7 (SHA256_MEM_BASE+0x40)
#define SHA256_TARGET_HASH_H8 (SHA256_MEM_BASE+0x44)
/*======*======*======*======*======*=======*
* WINC BIGINT HW Engine Register Definition *
*======*======*======*======*======*========*/
#define BIGINT_ENGINE_ADDR (0x180080ul)
#define BIGINT_VERSION (BIGINT_ENGINE_ADDR + 0x00)
#define BIGINT_MISC_CTRL (BIGINT_ENGINE_ADDR + 0x04)
#define BIGINT_MISC_CTRL_CTL_START (NBIT0)
#define BIGINT_MISC_CTRL_CTL_RESET (NBIT1)
#define BIGINT_MISC_CTRL_CTL_MSW_FIRST (NBIT2)
#define BIGINT_MISC_CTRL_CTL_SWAP_BYTE_ORDER (NBIT3)
#define BIGINT_MISC_CTRL_CTL_FORCE_BARRETT (NBIT4)
#define BIGINT_MISC_CTRL_CTL_M_PRIME_VALID (NBIT5)
#define BIGINT_M_PRIME (BIGINT_ENGINE_ADDR + 0x08)
#define BIGINT_STATUS (BIGINT_ENGINE_ADDR + 0x0C)
#define BIGINT_STATUS_STS_DONE (NBIT0)
#define BIGINT_CLK_COUNT (BIGINT_ENGINE_ADDR + 0x10)
#define BIGINT_ADDR_X (BIGINT_ENGINE_ADDR + 0x14)
#define BIGINT_ADDR_E (BIGINT_ENGINE_ADDR + 0x18)
#define BIGINT_ADDR_M (BIGINT_ENGINE_ADDR + 0x1C)
#define BIGINT_ADDR_R (BIGINT_ENGINE_ADDR + 0x20)
#define BIGINT_LENGTH (BIGINT_ENGINE_ADDR + 0x24)
#define BIGINT_IRQ_STS (BIGINT_ENGINE_ADDR + 0x28)
#define BIGINT_IRQ_STS_DONE (NBIT0)
#define BIGINT_IRQ_STS_CHOOSE_MONT (NBIT1)
#define BIGINT_IRQ_STS_M_READ (NBIT2)
#define BIGINT_IRQ_STS_X_READ (NBIT3)
#define BIGINT_IRQ_STS_START (NBIT4)
#define BIGINT_IRQ_STS_PRECOMP_FINISH (NBIT5)
#define BIGINT_IRQ_MASK (BIGINT_ENGINE_ADDR + 0x2C)
#define BIGINT_IRQ_MASK_CTL_IRQ_MASK_START (NBIT4)
#define ENABLE_FLIPPING 1
#define GET_UINT32(BUF,OFFSET) (((uint32)((BUF)[OFFSET])) | ((uint32)(((BUF)[OFFSET + 1]) << 8)) | \
((uint32)(((BUF)[OFFSET + 2]) << 16)) | ((uint32)(((BUF)[OFFSET + 3]) << 24)))
#define PUTU32(VAL32,BUF,OFFSET) \
do \
{ \
(BUF)[OFFSET ] = BYTE_3((VAL32)); \
(BUF)[OFFSET +1 ] = BYTE_2((VAL32)); \
(BUF)[OFFSET +2 ] = BYTE_1((VAL32)); \
(BUF)[OFFSET +3 ] = BYTE_0((VAL32)); \
}while(0)
/*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*
DATA TYPES
*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*/
/*!
@struct \
tstrHashContext
@brief
*/
typedef struct{
uint32 au32HashState[M2M_SHA256_DIGEST_LEN/4];
uint8 au8CurrentBlock[64];
uint32 u32TotalLength;
uint8 u8InitHashFlag;
}tstrSHA256HashCtxt;
/*======*======*======*======*======*=======*
* SHA256 IMPLEMENTATION *
*======*======*======*======*======*========*/
sint8 m2m_sha256_hash_init(tstrM2mSha256Ctxt *pstrSha256Ctxt)
{
tstrSHA256HashCtxt *pstrSHA256 = (tstrSHA256HashCtxt*)pstrSha256Ctxt;
if(pstrSHA256 != NULL)
{
m2m_memset((uint8*)pstrSha256Ctxt, 0, sizeof(tstrM2mSha256Ctxt));
pstrSHA256->u8InitHashFlag = 1;
}
return 0;
}
sint8 m2m_sha256_hash_update(tstrM2mSha256Ctxt *pstrSha256Ctxt, uint8 *pu8Data, uint16 u16DataLength)
{
sint8 s8Ret = M2M_ERR_FAIL;
tstrSHA256HashCtxt *pstrSHA256 = (tstrSHA256HashCtxt*)pstrSha256Ctxt;
if(pstrSHA256 != NULL)
{
uint32 u32ReadAddr;
uint32 u32WriteAddr = SHARED_MEM_BASE;
uint32 u32Addr = u32WriteAddr;
uint32 u32ResidualBytes;
uint32 u32NBlocks;
uint32 u32Offset;
uint32 u32CurrentBlock = 0;
uint8 u8IsDone = 0;
/* Get the remaining bytes from the previous update (if the length is not block aligned). */
u32ResidualBytes = pstrSHA256->u32TotalLength % SHA_BLOCK_SIZE;
/* Update the total data length. */
pstrSHA256->u32TotalLength += u16DataLength;
if(u32ResidualBytes != 0)
{
if((u32ResidualBytes + u16DataLength) >= SHA_BLOCK_SIZE)
{
u32Offset = SHA_BLOCK_SIZE - u32ResidualBytes;
m2m_memcpy(&pstrSHA256->au8CurrentBlock[u32ResidualBytes], pu8Data, u32Offset);
pu8Data += u32Offset;
u16DataLength -= u32Offset;
nm_write_block(u32Addr, pstrSHA256->au8CurrentBlock, SHA_BLOCK_SIZE);
u32Addr += SHA_BLOCK_SIZE;
u32CurrentBlock = 1;
}
else
{
m2m_memcpy(&pstrSHA256->au8CurrentBlock[u32ResidualBytes], pu8Data, u16DataLength);
u16DataLength = 0;
}
}
/* Get the number of HASH BLOCKs and the residual bytes. */
u32NBlocks = u16DataLength / SHA_BLOCK_SIZE;
u32ResidualBytes = u16DataLength % SHA_BLOCK_SIZE;
if(u32NBlocks != 0)
{
nm_write_block(u32Addr, pu8Data, (uint16)(u32NBlocks * SHA_BLOCK_SIZE));
pu8Data += (u32NBlocks * SHA_BLOCK_SIZE);
}
u32NBlocks += u32CurrentBlock;
if(u32NBlocks != 0)
{
uint32 u32RegVal = 0;
nm_write_reg(SHA256_CTRL, u32RegVal);
u32RegVal |= SHA256_CTRL_FORCE_SHA256_QUIT_MASK;
nm_write_reg(SHA256_CTRL, u32RegVal);
if(pstrSHA256->u8InitHashFlag)
{
pstrSHA256->u8InitHashFlag = 0;
u32RegVal |= SHA256_CTRL_INIT_SHA256_STATE_MASK;
}
u32ReadAddr = u32WriteAddr + (u32NBlocks * SHA_BLOCK_SIZE);
nm_write_reg(SHA256_DATA_LENGTH, (u32NBlocks * SHA_BLOCK_SIZE));
nm_write_reg(SHA256_START_RD_ADDR, u32WriteAddr);
nm_write_reg(SHA256_START_WR_ADDR, u32ReadAddr);
u32RegVal |= SHA256_CTRL_START_CALC_MASK;
u32RegVal &= ~(0x7 << 8);
u32RegVal |= (2 << 8);
nm_write_reg(SHA256_CTRL, u32RegVal);
/* 5. Wait for done_intr */
while(!u8IsDone)
{
u32RegVal = nm_read_reg(SHA256_DONE_INTR_STS);
u8IsDone = u32RegVal & NBIT0;
}
}
if(u32ResidualBytes != 0)
{
m2m_memcpy(pstrSHA256->au8CurrentBlock, pu8Data, u32ResidualBytes);
}
s8Ret = M2M_SUCCESS;
}
return s8Ret;
}
sint8 m2m_sha256_hash_finish(tstrM2mSha256Ctxt *pstrSha256Ctxt, uint8 *pu8Sha256Digest)
{
sint8 s8Ret = M2M_ERR_FAIL;
tstrSHA256HashCtxt *pstrSHA256 = (tstrSHA256HashCtxt*)pstrSha256Ctxt;
if(pstrSHA256 != NULL)
{
uint32 u32ReadAddr;
uint32 u32WriteAddr = SHARED_MEM_BASE;
uint32 u32Addr = u32WriteAddr;
uint16 u16Offset;
uint16 u16PaddingLength;
uint16 u16NBlocks = 1;
uint32 u32RegVal = 0;
uint32 u32Idx,u32ByteIdx;
uint32 au32Digest[M2M_SHA256_DIGEST_LEN / 4];
uint8 u8IsDone = 0;
nm_write_reg(SHA256_CTRL,u32RegVal);
u32RegVal |= SHA256_CTRL_FORCE_SHA256_QUIT_MASK;
nm_write_reg(SHA256_CTRL,u32RegVal);
if(pstrSHA256->u8InitHashFlag)
{
pstrSHA256->u8InitHashFlag = 0;
u32RegVal |= SHA256_CTRL_INIT_SHA256_STATE_MASK;
}
/* Calculate the offset of the last data byte in the current block. */
u16Offset = (uint16)(pstrSHA256->u32TotalLength % SHA_BLOCK_SIZE);
/* Add the padding byte 0x80. */
pstrSHA256->au8CurrentBlock[u16Offset ++] = 0x80;
/* Calculate the required padding to complete
one Hash Block Size.
*/
u16PaddingLength = SHA_BLOCK_SIZE - u16Offset;
m2m_memset(&pstrSHA256->au8CurrentBlock[u16Offset], 0, u16PaddingLength);
/* If the padding count is not enough to hold 64-bit representation of
the total input message length, one padding block is required.
*/
if(u16PaddingLength < 8)
{
nm_write_block(u32Addr, pstrSHA256->au8CurrentBlock, SHA_BLOCK_SIZE);
u32Addr += SHA_BLOCK_SIZE;
m2m_memset(pstrSHA256->au8CurrentBlock, 0, SHA_BLOCK_SIZE);
u16NBlocks ++;
}
/* pack the length at the end of the padding block */
PUTU32(pstrSHA256->u32TotalLength << 3, pstrSHA256->au8CurrentBlock, (SHA_BLOCK_SIZE - 4));
u32ReadAddr = u32WriteAddr + (u16NBlocks * SHA_BLOCK_SIZE);
nm_write_block(u32Addr, pstrSHA256->au8CurrentBlock, SHA_BLOCK_SIZE);
nm_write_reg(SHA256_DATA_LENGTH, (u16NBlocks * SHA_BLOCK_SIZE));
nm_write_reg(SHA256_START_RD_ADDR, u32WriteAddr);
nm_write_reg(SHA256_START_WR_ADDR, u32ReadAddr);
u32RegVal |= SHA256_CTRL_START_CALC_MASK;
u32RegVal |= SHA256_CTRL_WR_BACK_HASH_VALUE_MASK;
u32RegVal &= ~(0x7UL << 8);
u32RegVal |= (0x2UL << 8);
nm_write_reg(SHA256_CTRL,u32RegVal);
/* 5. Wait for done_intr */
while(!u8IsDone)
{
u32RegVal = nm_read_reg(SHA256_DONE_INTR_STS);
u8IsDone = u32RegVal & NBIT0;
}
nm_read_block(u32ReadAddr, (uint8*)au32Digest, 32);
/* Convert the output words to an array of bytes.
*/
u32ByteIdx = 0;
for(u32Idx = 0; u32Idx < (M2M_SHA256_DIGEST_LEN / 4); u32Idx ++)
{
pu8Sha256Digest[u32ByteIdx ++] = BYTE_3(au32Digest[u32Idx]);
pu8Sha256Digest[u32ByteIdx ++] = BYTE_2(au32Digest[u32Idx]);
pu8Sha256Digest[u32ByteIdx ++] = BYTE_1(au32Digest[u32Idx]);
pu8Sha256Digest[u32ByteIdx ++] = BYTE_0(au32Digest[u32Idx]);
}
s8Ret = M2M_SUCCESS;
}
return s8Ret;
}
/*======*======*======*======*======*=======*
* RSA IMPLEMENTATION *
*======*======*======*======*======*========*/
static void FlipBuffer(uint8 *pu8InBuffer, uint8 *pu8OutBuffer, uint16 u16BufferSize)
{
uint16 u16Idx;
for(u16Idx = 0; u16Idx < u16BufferSize; u16Idx ++)
{
#if ENABLE_FLIPPING == 1
pu8OutBuffer[u16Idx] = pu8InBuffer[u16BufferSize - u16Idx - 1];
#else
pu8OutBuffer[u16Idx] = pu8InBuffer[u16Idx];
#endif
}
}
void BigInt_ModExp
(
uint8 *pu8X, uint16 u16XSize,
uint8 *pu8E, uint16 u16ESize,
uint8 *pu8M, uint16 u16MSize,
uint8 *pu8R, uint16 u16RSize
)
{
uint32 u32Reg;
uint8 au8Tmp[780] = {0};
uint32 u32XAddr = SHARED_MEM_BASE;
uint32 u32MAddr;
uint32 u32EAddr;
uint32 u32RAddr;
uint8 u8EMswBits = 32;
uint32 u32Mprime = 0x7F;
uint16 u16XSizeWords,u16ESizeWords;
uint32 u32Exponent;
u16XSizeWords = (u16XSize + 3) / 4;
u16ESizeWords = (u16ESize + 3) / 4;
u32MAddr = u32XAddr + (u16XSizeWords * 4);
u32EAddr = u32MAddr + (u16XSizeWords * 4);
u32RAddr = u32EAddr + (u16ESizeWords * 4);
/* Reset the core.
*/
u32Reg = 0;
u32Reg |= BIGINT_MISC_CTRL_CTL_RESET;
u32Reg = nm_read_reg(BIGINT_MISC_CTRL);
u32Reg &= ~BIGINT_MISC_CTRL_CTL_RESET;
u32Reg = nm_read_reg(BIGINT_MISC_CTRL);
nm_write_block(u32RAddr,au8Tmp, u16RSize);
/* Write Input Operands to Chip Memory.
*/
/*------- X -------*/
FlipBuffer(pu8X,au8Tmp,u16XSize);
nm_write_block(u32XAddr,au8Tmp,u16XSizeWords * 4);
/*------- E -------*/
m2m_memset(au8Tmp, 0, sizeof(au8Tmp));
FlipBuffer(pu8E, au8Tmp, u16ESize);
nm_write_block(u32EAddr, au8Tmp, u16ESizeWords * 4);
u32Exponent = GET_UINT32(au8Tmp, (u16ESizeWords * 4) - 4);
while((u32Exponent & NBIT31)== 0)
{
u32Exponent <<= 1;
u8EMswBits --;
}
/*------- M -------*/
m2m_memset(au8Tmp, 0, sizeof(au8Tmp));
FlipBuffer(pu8M, au8Tmp, u16XSize);
nm_write_block(u32MAddr, au8Tmp, u16XSizeWords * 4);
/* Program the addresses of the input operands.
*/
nm_write_reg(BIGINT_ADDR_X, u32XAddr);
nm_write_reg(BIGINT_ADDR_E, u32EAddr);
nm_write_reg(BIGINT_ADDR_M, u32MAddr);
nm_write_reg(BIGINT_ADDR_R, u32RAddr);
/* Mprime.
*/
nm_write_reg(BIGINT_M_PRIME,u32Mprime);
/* Length.
*/
u32Reg = (u16XSizeWords & 0xFF);
u32Reg += ((u16ESizeWords & 0xFF) << 8);
u32Reg += (u8EMswBits << 16);
nm_write_reg(BIGINT_LENGTH,u32Reg);
/* CTRL Register.
*/
u32Reg = nm_read_reg(BIGINT_MISC_CTRL);
u32Reg ^= BIGINT_MISC_CTRL_CTL_START;
u32Reg |= BIGINT_MISC_CTRL_CTL_FORCE_BARRETT;
//u32Reg |= BIGINT_MISC_CTRL_CTL_M_PRIME_VALID;
#if ENABLE_FLIPPING == 0
u32Reg |= BIGINT_MISC_CTRL_CTL_MSW_FIRST;
#endif
nm_write_reg(BIGINT_MISC_CTRL,u32Reg);
/* Wait for computation to complete. */
while(1)
{
u32Reg = nm_read_reg(BIGINT_IRQ_STS);
if(u32Reg & BIGINT_IRQ_STS_DONE)
{
break;
}
}
nm_write_reg(BIGINT_IRQ_STS,0);
m2m_memset(au8Tmp, 0, sizeof(au8Tmp));
nm_read_block(u32RAddr, au8Tmp, u16RSize);
FlipBuffer(au8Tmp, pu8R, u16RSize);
}
#define MD5_DIGEST_SIZE (16)
#define SHA1_DIGEST_SIZE (20)
static const uint8 au8TEncodingMD5[] =
{
0x30, 0x20, 0x30, 0x0C, 0x06, 0x08, 0x2A, 0x86,
0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, 0x05, 0x00,
0x04
};
/*!< Fixed part of the Encoding T for the MD5 hash algorithm.
*/
static const uint8 au8TEncodingSHA1[] =
{
0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B, 0x0E,
0x03, 0x02, 0x1A, 0x05, 0x00, 0x04
};
/*!< Fixed part of the Encoding T for the SHA-1 hash algorithm.
*/
static const uint8 au8TEncodingSHA2[] =
{
0x30, 0x31, 0x30, 0x0D, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
0x00, 0x04
};
/*!< Fixed part of the Encoding T for the SHA-2 hash algorithm.
*/
sint8 m2m_rsa_sign_verify(uint8 *pu8N, uint16 u16NSize, uint8 *pu8E, uint16 u16ESize, uint8 *pu8SignedMsgHash,
uint16 u16HashLength, uint8 *pu8RsaSignature)
{
sint8 s8Ret = M2M_RSA_SIGN_FAIL;
if((pu8N != NULL) && (pu8E != NULL) && (pu8RsaSignature != NULL) && (pu8SignedMsgHash != NULL))
{
uint16 u16TLength, u16TEncodingLength;
uint8 *pu8T;
uint8 au8EM[512];
/* Selection of correct T Encoding based on the hash size.
*/
if(u16HashLength == MD5_DIGEST_SIZE)
{
pu8T = (uint8*)au8TEncodingMD5;
u16TEncodingLength = sizeof(au8TEncodingMD5);
}
else if(u16HashLength == SHA1_DIGEST_SIZE)
{
pu8T = (uint8*)au8TEncodingSHA1;
u16TEncodingLength = sizeof(au8TEncodingSHA1);
}
else
{
pu8T = (uint8*)au8TEncodingSHA2;
u16TEncodingLength = sizeof(au8TEncodingSHA2);
}
u16TLength = u16TEncodingLength + 1 + u16HashLength;
/* If emLen < tLen + 11.
*/
if(u16NSize >= (u16TLength + 11))
{
uint32 u32PSLength,u32Idx = 0;
/*
RSA verification
*/
BigInt_ModExp(pu8RsaSignature, u16NSize, pu8E, u16ESize, pu8N, u16NSize, au8EM, u16NSize);
u32PSLength = u16NSize - u16TLength - 3;
/*
The calculated EM must match the following pattern.
*======*======*======*======*======*
* 0x00 || 0x01 || PS || 0x00 || T *
*======*======*======*======*======*
Where PS is all 0xFF
T is defined based on the hash algorithm.
*/
if((au8EM[0] == 0x00) && (au8EM[1] == 0x01))
{
for(u32Idx = 2; au8EM[u32Idx] == 0xFF; u32Idx ++);
if(u32Idx == (u32PSLength + 2))
{
if(au8EM[u32Idx ++] == 0x00)
{
if(!m2m_memcmp(&au8EM[u32Idx], pu8T, u16TEncodingLength))
{
u32Idx += u16TEncodingLength;
if(au8EM[u32Idx ++] == u16HashLength)
s8Ret = m2m_memcmp(&au8EM[u32Idx], pu8SignedMsgHash, u16HashLength);
}
}
}
}
}
}
return s8Ret;
}
sint8 m2m_rsa_sign_gen(uint8 *pu8N, uint16 u16NSize, uint8 *pu8d, uint16 u16dSize, uint8 *pu8SignedMsgHash,
uint16 u16HashLength, uint8 *pu8RsaSignature)
{
sint8 s8Ret = M2M_RSA_SIGN_FAIL;
if((pu8N != NULL) && (pu8d != NULL) && (pu8RsaSignature != NULL) && (pu8SignedMsgHash != NULL))
{
uint16 u16TLength, u16TEncodingLength;
uint8 *pu8T;
uint8 au8EM[512];
/* Selection of correct T Encoding based on the hash size.
*/
if(u16HashLength == MD5_DIGEST_SIZE)
{
pu8T = (uint8*)au8TEncodingMD5;
u16TEncodingLength = sizeof(au8TEncodingMD5);
}
else if(u16HashLength == SHA1_DIGEST_SIZE)
{
pu8T = (uint8*)au8TEncodingSHA1;
u16TEncodingLength = sizeof(au8TEncodingSHA1);
}
else
{
pu8T = (uint8*)au8TEncodingSHA2;
u16TEncodingLength = sizeof(au8TEncodingSHA2);
}
u16TLength = u16TEncodingLength + 1 + u16HashLength;
/* If emLen < tLen + 11.
*/
if(u16NSize >= (u16TLength + 11))
{
uint16 u16PSLength = 0;
uint16 u16Offset = 0;
/*
The calculated EM must match the following pattern.
*======*======*======*======*======*
* 0x00 || 0x01 || PS || 0x00 || T *
*======*======*======*======*======*
Where PS is all 0xFF
T is defined based on the hash algorithm.
*/
au8EM[u16Offset ++] = 0;
au8EM[u16Offset ++] = 1;
u16PSLength = u16NSize - u16TLength - 3;
m2m_memset(&au8EM[u16Offset], 0xFF, u16PSLength);
u16Offset += u16PSLength;
au8EM[u16Offset ++] = 0;
m2m_memcpy(&au8EM[u16Offset], pu8T, u16TEncodingLength);
u16Offset += u16TEncodingLength;
au8EM[u16Offset ++] = u16HashLength;
m2m_memcpy(&au8EM[u16Offset], pu8SignedMsgHash, u16HashLength);
/*
RSA Signature Generation
*/
BigInt_ModExp(au8EM, u16NSize, pu8d, u16dSize, pu8N, u16NSize, pu8RsaSignature, u16NSize);
s8Ret = M2M_RSA_SIGN_OK;
}
}
return s8Ret;
}
#endif /* CONF_CRYPTO */