707 lines
18 KiB
C

/*******************************************************************************
File Name:
nmasic.c
Summary:
This module contains WINC3400 ASIC specific internal APIs.
Description:
This module contains WINC3400 ASIC specific internal APIs.
*******************************************************************************/
//DOM-IGNORE-BEGIN
/*******************************************************************************
* Copyright (C) 2021 Microchip Technology Inc. and its subsidiaries.
*
* Subject to your compliance with these terms, you may use Microchip software
* and any derivatives exclusively with Microchip products. It is your
* responsibility to comply with third party license terms applicable to your
* use of third party software (including open source software) that may
* accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
* EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
* WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
* PARTICULAR PURPOSE.
*
* IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE,
* INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND
* WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
* BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
* FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN
* ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*******************************************************************************/
#include "nm_common.h"
#include "nmbus.h"
#include "nm_bsp.h"
#include "nmasic.h"
#include "m2m_types.h"
#define NMI_GLB_RESET_0 (NMI_PERIPH_REG_BASE + 0x400)
#define NMI_INTR_REG_BASE (NMI_PERIPH_REG_BASE + 0xa00)
#define NMI_PIN_MUX_0 (NMI_PERIPH_REG_BASE + 0x408)
#define NMI_INTR_ENABLE (NMI_INTR_REG_BASE)
#define GET_UINT32(X,Y) (X[0+Y] + ((uint32_t)X[1+Y]<<8) + ((uint32_t)X[2+Y]<<16) +((uint32_t)X[3+Y]<<24))
#define CORT_HOST_COMM (0x14)
#define HOST_CORT_COMM (0x0e)
#define WAKE_CLK_REG (0x1)
#define CLOCKS_EN_REG (0x13)
#define TIMEOUT (2000)
#define WAKEUP_TRIALS (4)
int8_t chip_apply_conf(uint32_t u32Conf)
{
int8_t ret = M2M_SUCCESS;
uint32_t val32 = u32Conf;
#ifdef __ENABLE_PMU__
val32 |= rHAVE_USE_PMU_BIT;
#endif
#ifdef __ENABLE_SLEEP_CLK_SRC_RTC__
val32 |= rHAVE_SLEEP_CLK_SRC_RTC_BIT;
#elif defined __ENABLE_SLEEP_CLK_SRC_XO__
val32 |= rHAVE_SLEEP_CLK_SRC_XO_BIT;
#endif
#ifdef __ENABLE_EXT_PA_INV_TX_RX__
val32 |= rHAVE_EXT_PA_INV_TX_RX;
#endif
#ifdef __ENABLE_LEGACY_RF_SETTINGS__
val32 |= rHAVE_LEGACY_RF_SETTINGS;
#endif
#ifdef __DISABLE_FIRMWARE_LOGS__
val32 |= rHAVE_LOGS_DISABLED_BIT;
#endif
do {
nm_write_reg(rNMI_GP_REG_1, val32);
if(val32 != 0) {
uint32_t reg = 0;
ret = nm_read_reg_with_ret(rNMI_GP_REG_1, &reg);
if(ret == M2M_SUCCESS) {
if(reg == val32)
break;
}
} else {
break;
}
} while(1);
return M2M_SUCCESS;
}
void chip_idle(void)
{
uint32_t reg =0;
nm_read_reg_with_ret(WAKE_CLK_REG, &reg);
if(reg&NBIT1)
{
reg &=~NBIT1;
nm_write_reg(WAKE_CLK_REG, reg);
}
}
void enable_rf_blocks(void)
{
nm_write_reg(0x6, 0xdb);
nm_write_reg(0x7, 0x6);
nm_sleep(10);
nm_write_reg(0x1480, 0);
nm_write_reg(0x1484, 0);
nm_sleep(10);
nm_write_reg(0x6, 0x0);
nm_write_reg(0x7, 0x0);
}
int8_t enable_interrupts(void)
{
uint32_t reg = 0;
int8_t ret = M2M_SUCCESS;
/**
interrupt pin mux select
**/
ret = nm_read_reg_with_ret(NMI_PIN_MUX_0, &reg);
if (M2M_SUCCESS != ret) {
return M2M_ERR_BUS_FAIL;
}
reg |= ((uint32_t) 1 << 8);
ret = nm_write_reg(NMI_PIN_MUX_0, reg);
if (M2M_SUCCESS != ret) {
return M2M_ERR_BUS_FAIL;
}
/**
interrupt enable
**/
ret = nm_read_reg_with_ret(NMI_INTR_ENABLE, &reg);
if (M2M_SUCCESS != ret) {
return M2M_ERR_BUS_FAIL;
}
reg |= ((uint32_t) 1 << 16);
ret = nm_write_reg(NMI_INTR_ENABLE, reg);
if (M2M_SUCCESS != ret) {
return M2M_ERR_BUS_FAIL;
}
return M2M_SUCCESS;
}
int8_t cpu_start(void) {
uint32_t reg = 0;
int8_t ret;
/**
reset regs
*/
ret = nm_write_reg(BOOTROM_REG, 0);
ret += nm_write_reg(NMI_STATE_REG, 0);
ret += nm_write_reg(NMI_REV_REG, 0);
/**
Go...
**/
ret += nm_read_reg_with_ret(0x1118, &reg);
if (M2M_SUCCESS != ret) {
ret = M2M_ERR_BUS_FAIL;
M2M_ERR("[nmi start]: fail read reg 0x1118 ...\r\n");
}
reg |= NBIT0;
ret += nm_write_reg(0x1118, reg);
ret = nm_write_reg(0x150014, 0x1); //DTODO WHY IS THIS HERE??
ret += nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
if ((reg & (1ul << 10)) == (1ul << 10)) {
reg &= ~(1ul << 10);
ret += nm_write_reg(NMI_GLB_RESET_0, reg);
}
reg |= (1ul << 10);
ret += nm_write_reg(NMI_GLB_RESET_0, reg);
nm_sleep(1); /* Removing this can cause a bus error. */
return ret;
}
uint32_t nmi_get_chipid(void)
{
static uint32_t chipid = 0;
if (chipid == 0) {
uint32_t rfrevid;
if ((nm_read_reg_with_ret(0x1000, &chipid)) != M2M_SUCCESS) {
chipid = 0;
return 0;
}
if ((nm_read_reg_with_ret(0x13f4, &rfrevid)) != M2M_SUCCESS) {
chipid = 0;
return 0;
}
if (chipid == 0x1002a0) {
if (rfrevid == 0x1) { /* 1002A0 */
} else /* if (rfrevid == 0x2) */ { /* 1002A1 */
chipid = 0x1002a1;
}
} else if (chipid == 0x1002b0) {
if (rfrevid == 3) { /* 1002B0 */
} else if (rfrevid == 4) { /* 1002B1 */
chipid = 0x1002b1;
} else /* if(rfrevid == 5) */ { /* 1002B2 */
chipid = 0x1002b2;
}
} else if(chipid == 0x1000f0) {
/* For 3400, the WiFi chip ID register reads 0x1000f0.
* Therefore using BT chip ID register here which should read 0x3000D0
*/
#define rBT_CHIP_ID_REG (0x3b0000)
if((nm_read_reg_with_ret(rBT_CHIP_ID_REG, &chipid)) != M2M_SUCCESS) {
chipid = 0;
return 0;
}
if(chipid == 0x3000d0) {
if(rfrevid == 6) {
chipid = 0x3000d1;
}
else if(rfrevid == 2) {
chipid = 0x3000d2;
}
}
}
//#define PROBE_FLASH
#ifdef PROBE_FLASH
if(chipid) {
UWORD32 flashid;
flashid = probe_spi_flash();
if((chipid & 0xf00000) == 0x300000) {
if(flashid == 0x1440ef) {
chipid &= ~(0x0f0000);
chipid |= 0x040000;
}
} else {
if(flashid == 0x1230ef) {
chipid &= ~(0x0f0000);
chipid |= 0x050000;
}
if(flashid == 0xc21320c2) {
chipid &= ~(0x0f0000);
chipid |= 0x050000;
}
}
}
#else
/*M2M is by default have SPI flash*/
if((chipid & 0xf00000) == 0x300000) {
chipid &= ~(0x0f0000);
chipid |= 0x040000;
} else {
chipid &= ~(0x0f0000);
chipid |= 0x050000;
}
#endif /* PROBE_FLASH */
}
return chipid;
}
uint32_t nmi_get_rfrevid(void)
{
uint32_t rfrevid;
if((nm_read_reg_with_ret(0x13f4, &rfrevid)) != M2M_SUCCESS) {
rfrevid = 0;
}
return rfrevid;
}
void restore_pmu_settings_after_global_reset(void)
{
/*
* Must restore PMU register value after
* global reset if PMU toggle is done at
* least once since the last hard reset.
*/
if(REV(nmi_get_chipid()) >= REV_2B0) {
nm_write_reg(0x1e48, 0xb78469ce);
}
}
void nmi_update_pll(void)
{
uint32_t pll;
pll = nm_read_reg(0x1428);
pll &= ~0x1ul;
nm_write_reg(0x1428, pll);
pll |= 0x1ul;
nm_write_reg(0x1428, pll);
}
void nmi_set_sys_clk_src_to_xo(void)
{
uint32_t val32;
/* Switch system clock source to XO. This will take effect after nmi_update_pll(). */
val32 = nm_read_reg(0x141c);
val32 |= (1 << 2);
nm_write_reg(0x141c, val32);
/* Do PLL update */
nmi_update_pll();
}
int8_t chip_sleep(void)
{
uint32_t reg;
int8_t ret = M2M_SUCCESS;
while(1)
{
ret = nm_read_reg_with_ret(CORT_HOST_COMM, &reg);
if(ret != M2M_SUCCESS) goto ERR1;
if((reg & NBIT0) == 0) break;
}
/* Clear bit 1 */
ret = nm_read_reg_with_ret(WAKE_CLK_REG, &reg);
if(ret != M2M_SUCCESS)goto ERR1;
if(reg & NBIT1)
{
reg &=~NBIT1;
ret = nm_write_reg(WAKE_CLK_REG, reg);
if(ret != M2M_SUCCESS)goto ERR1;
}
ret = nm_read_reg_with_ret(HOST_CORT_COMM, &reg);
if(ret != M2M_SUCCESS)goto ERR1;
if(reg & NBIT0)
{
reg &= ~NBIT0;
ret = nm_write_reg(HOST_CORT_COMM, reg);
if(ret != M2M_SUCCESS)goto ERR1;
}
ERR1:
return ret;
}
int8_t chip_wake(void)
{
int8_t ret = M2M_SUCCESS;
uint32_t reg = 0, clk_status_reg = 0, trials = 0;
nm_read_reg_with_ret(CLOCKS_EN_REG, &clk_status_reg);
ret = nm_read_reg_with_ret(HOST_CORT_COMM, &reg);
if(ret != M2M_SUCCESS)goto _WAKE_EXIT;
if(!(reg & NBIT0))
{
/*USE bit 0 to indicate host wakeup*/
ret = nm_write_reg(HOST_CORT_COMM, reg|NBIT0);
if(ret != M2M_SUCCESS)goto _WAKE_EXIT;
}
ret = nm_read_reg_with_ret(WAKE_CLK_REG, &reg);
if(ret != M2M_SUCCESS) goto _WAKE_EXIT;
/* Set bit 1 */
if(!(reg & NBIT1))
{
ret = nm_write_reg(WAKE_CLK_REG, reg | NBIT1);
if(ret != M2M_SUCCESS) goto _WAKE_EXIT;
}
do
{
ret = nm_read_reg_with_ret(CLOCKS_EN_REG, &clk_status_reg);
if(ret != M2M_SUCCESS) {
M2M_ERR("Bus error (5).%d %" PRIx32 "\n", ret, clk_status_reg);
goto _WAKE_EXIT;
}
if (clk_status_reg & NBIT2) {
break;
}
nm_sleep(2);
trials++;
if (trials > WAKEUP_TRIALS)
{
M2M_ERR("Failed to wakeup the chip\n");
ret = M2M_ERR_TIME_OUT;
goto _WAKE_EXIT;
}
} while(1);
/* Workaround sometimes spi fail to read clock regs after reading/writing clockless registers */
//nm_bus_reset();
_WAKE_EXIT:
return ret;
}
int8_t chip_reset_and_cpu_halt(void)
{
int8_t ret = M2M_SUCCESS;
uint32_t reg = 0;
ret = chip_wake();
if (ret != M2M_SUCCESS) {
return ret;
}
chip_reset();
ret = nm_read_reg_with_ret(0x1118, &reg);
if (M2M_SUCCESS != ret) {
ret = M2M_ERR_BUS_FAIL;
M2M_ERR("[nmi start]: fail read reg 0x1118 ...\r\n");
}
reg |= (1 << 0);
ret = nm_write_reg(0x1118, reg);
ret += nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
if ((reg & (1ul << 10)) == (1ul << 10)) {
reg &= ~(1ul << 10);
ret += nm_write_reg(NMI_GLB_RESET_0, reg);
ret += nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
}
nm_write_reg(BOOTROM_REG, 0);
nm_write_reg(NMI_STATE_REG, 0);
nm_write_reg(NMI_REV_REG, 0);
nm_write_reg(NMI_PIN_MUX_0, 0x11111000);
return ret;
}
int8_t chip_reset(void)
{
int8_t ret = M2M_SUCCESS;
ret += nm_write_reg(NMI_GLB_RESET_0, 0);
nm_sleep(50);
return ret;
}
int8_t wait_for_bootrom(uint8_t arg)
{
int8_t ret = M2M_SUCCESS;
uint32_t reg = 0, cnt = 0;
uint32_t u32GpReg1 = 0;
reg = 0;
while(1) {
reg = nm_read_reg(0x1014); /* wait for efuse loading done */
if (reg & 0x80000000) {
break;
}
nm_sleep(1); /* Removing this can cause a bus error. */
}
reg = nm_read_reg(M2M_WAIT_FOR_HOST_REG);
reg &= 0x1;
/* check if waiting for the host will be skipped or not */
if(reg == 0)
{
while(reg != M2M_FINISH_BOOT_ROM)
{
nm_sleep(1);
reg = nm_read_reg(BOOTROM_REG);
if (++cnt > TIMEOUT)
{
M2M_DBG("failed to load firmware from flash.\r\n");
ret = M2M_ERR_INIT;
goto ERR2;
}
}
}
if (M2M_WIFI_MODE_CONFIG == arg) {
nm_write_reg(NMI_REV_REG, M2M_ATE_FW_START_VALUE);
} else if (M2M_WIFI_MODE_ETHERNET == arg) {
u32GpReg1 = rHAVE_ETHERNET_MODE_BIT;
} else {
/*bypass this step*/
}
if (REV(nmi_get_chipid()) == REV_3A0)
{
chip_apply_conf(u32GpReg1 | rHAVE_USE_PMU_BIT);
}
else
{
chip_apply_conf(u32GpReg1);
}
nm_write_reg(BOOTROM_REG, M2M_START_FIRMWARE);
#ifdef __ROM_TEST__
rom_test();
#endif /* __ROM_TEST__ */
ERR2:
return ret;
}
int8_t wait_for_firmware_start(uint8_t arg)
{
int8_t ret = M2M_SUCCESS;
uint32_t reg = 0, cnt = 0;
volatile uint32_t regAddress = NMI_STATE_REG;
volatile uint32_t checkValue = M2M_FINISH_INIT_STATE;
if(M2M_WIFI_MODE_CONFIG == arg) {
regAddress = NMI_REV_REG;
checkValue = M2M_ATE_FW_START_VALUE;//M2M_ATE_FW_IS_UP_VALUE;
} else {
/*bypass this step*/
}
while (checkValue != reg)
{
nm_sleep(2); /* Removing this can cause a bus error. */
M2M_DBG("%x %x %x\r\n", (unsigned int)nm_read_reg(0x108c), (unsigned int)nm_read_reg(0x108c), (unsigned int)nm_read_reg(0x14A0));
if (nm_read_reg_with_ret(regAddress, &reg) != M2M_SUCCESS)
{
// ensure reg != checkValue
reg = !checkValue;
}
if (++cnt > TIMEOUT)
{
M2M_DBG("Time out for wait firmware Run\r\n");
ret = M2M_ERR_INIT;
goto ERR;
}
}
if (M2M_FINISH_INIT_STATE == checkValue)
{
nm_write_reg(NMI_STATE_REG, 0);
}
ERR:
return ret;
}
int8_t chip_deinit(void)
{
uint32_t reg = 0;
int8_t ret;
uint8_t timeout = 10;
/**
stop the firmware, need a re-download
**/
ret = nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
if (ret != M2M_SUCCESS) {
M2M_ERR("failed to de-initialize\r\n");
}
reg &= ~(1 << 10);
ret = nm_write_reg(NMI_GLB_RESET_0, reg);
if (ret != M2M_SUCCESS) {
M2M_ERR("Error while writing reg\r\n");
return ret;
}
do {
ret = nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
if (ret != M2M_SUCCESS) {
M2M_ERR("Error while reading reg\r\n");
return ret;
}
/*Workaround to ensure that the chip is actually reset*/
if ((reg & (1 << 10))) {
M2M_DBG("Bit 10 not reset retry %d\r\n", timeout);
reg &= ~(1 << 10);
ret = nm_write_reg(NMI_GLB_RESET_0, reg);
timeout--;
} else {
break;
}
} while (timeout);
return ret;
}
int8_t set_gpio_dir(uint8_t gpio, uint8_t dir)
{
uint32_t val32;
int8_t ret;
ret = nm_read_reg_with_ret(0x20108, &val32);
if(ret != M2M_SUCCESS) goto _EXIT;
if(dir) {
val32 |= (1ul << gpio);
} else {
val32 &= ~(1ul << gpio);
}
ret = nm_write_reg(0x20108, val32);
_EXIT:
return ret;
}
int8_t set_gpio_val(uint8_t gpio, uint8_t val)
{
uint32_t val32;
int8_t ret;
ret = nm_read_reg_with_ret(0x20100, &val32);
if(ret != M2M_SUCCESS) goto _EXIT;
if(val) {
val32 |= (1ul << gpio);
} else {
val32 &= ~(1ul << gpio);
}
ret = nm_write_reg(0x20100, val32);
_EXIT:
return ret;
}
int8_t get_gpio_val(uint8_t gpio, uint8_t* val)
{
uint32_t val32;
int8_t ret;
ret = nm_read_reg_with_ret(0x20104, &val32);
if(ret != M2M_SUCCESS) goto _EXIT;
*val = (uint8_t)((val32 >> gpio) & 0x01);
_EXIT:
return ret;
}
int8_t pullup_ctrl(uint32_t pinmask, uint8_t enable)
{
int8_t s8Ret;
uint32_t val32;
s8Ret = nm_read_reg_with_ret(0x142c, &val32);
if (s8Ret != M2M_SUCCESS) {
M2M_ERR("[pullup_ctrl]: failed to read\r\n");
goto _EXIT;
}
if (enable) {
val32 &= ~pinmask;
} else {
val32 |= pinmask;
}
s8Ret = nm_write_reg(0x142c, val32);
if (s8Ret != M2M_SUCCESS) {
M2M_ERR("[pullup_ctrl]: failed to write\r\n");
goto _EXIT;
}
_EXIT:
return s8Ret;
}
int8_t nmi_get_otp_mac_address(uint8_t *pu8MacAddr, uint8_t *pu8IsValid)
{
int8_t ret;
uint32_t u32RegValue;
uint8_t mac[6];
tstrGpRegs strgp = {0};
ret = nm_read_reg_with_ret(rNMI_GP_REG_0, &u32RegValue);
if (ret != M2M_SUCCESS) goto _EXIT_ERR;
ret = nm_read_block(u32RegValue|0x30000,(uint8_t*)&strgp,sizeof(tstrGpRegs));
if (ret != M2M_SUCCESS) goto _EXIT_ERR;
u32RegValue = strgp.u32Mac_efuse_mib;
if (!EFUSED_MAC(u32RegValue)) {
M2M_DBG("Default MAC\r\n");
memset(pu8MacAddr, 0, 6);
goto _EXIT_ERR;
}
M2M_DBG("OTP MAC\r\n");
u32RegValue >>=16;
ret = nm_read_block(u32RegValue|0x30000, mac, 6);
memcpy(pu8MacAddr, mac, 6);
if (pu8IsValid) *pu8IsValid = 1;
return ret;
_EXIT_ERR:
if (pu8IsValid) *pu8IsValid = 0;
return ret;
}
int8_t nmi_get_mac_address(uint8_t *pu8MacAddr)
{
int8_t ret;
uint32_t u32RegValue;
uint8_t mac[6];
tstrGpRegs strgp = {0};
ret = nm_read_reg_with_ret(rNMI_GP_REG_0, &u32RegValue);
if (ret != M2M_SUCCESS) goto _EXIT_ERR;
ret = nm_read_block(u32RegValue|0x30000, (uint8_t*)&strgp, sizeof(tstrGpRegs));
if (ret != M2M_SUCCESS) goto _EXIT_ERR;
u32RegValue = strgp.u32Mac_efuse_mib;
u32RegValue &=0x0000ffff;
ret = nm_read_block(u32RegValue|0x30000, mac, 6);
memcpy(pu8MacAddr, mac, 6);
_EXIT_ERR:
return ret;
}
//DOM-IGNORE-END