2020-11-16 05:47:46 -05:00

1358 lines
30 KiB
C

/**
*
* \file
*
* \brief This module contains NMC1000 SPI protocol bus APIs implementation.
*
* Copyright (c) 2015 - 2017 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
#include "common/include/nm_common.h"
#ifdef CONF_WINC_USE_SPI
#define USE_OLD_SPI_SW
#include "bus_wrapper/include/nm_bus_wrapper.h"
#include "nmspi.h"
#define NMI_PERIPH_REG_BASE 0x1000
#define NMI_INTR_REG_BASE (NMI_PERIPH_REG_BASE + 0xa00)
#define NMI_CHIPID (NMI_PERIPH_REG_BASE)
#define NMI_PIN_MUX_0 (NMI_PERIPH_REG_BASE + 0x408)
#define NMI_INTR_ENABLE (NMI_INTR_REG_BASE)
#define NMI_SPI_REG_BASE 0xe800
#define NMI_SPI_CTL (NMI_SPI_REG_BASE)
#define NMI_SPI_MASTER_DMA_ADDR (NMI_SPI_REG_BASE + 0x4)
#define NMI_SPI_MASTER_DMA_COUNT (NMI_SPI_REG_BASE + 0x8)
#define NMI_SPI_SLAVE_DMA_ADDR (NMI_SPI_REG_BASE + 0xc)
#define NMI_SPI_SLAVE_DMA_COUNT (NMI_SPI_REG_BASE + 0x10)
#define NMI_SPI_TX_MODE (NMI_SPI_REG_BASE + 0x20)
#define NMI_SPI_PROTOCOL_CONFIG (NMI_SPI_REG_BASE + 0x24)
#define NMI_SPI_INTR_CTL (NMI_SPI_REG_BASE + 0x2c)
#define NMI_SPI_MISC_CTRL (NMI_SPI_REG_BASE + 0x48)
#define NMI_SPI_PROTOCOL_OFFSET (NMI_SPI_PROTOCOL_CONFIG - NMI_SPI_REG_BASE)
#define SPI_BASE NMI_SPI_REG_BASE
#define CMD_DMA_WRITE 0xc1
#define CMD_DMA_READ 0xc2
#define CMD_INTERNAL_WRITE 0xc3
#define CMD_INTERNAL_READ 0xc4
#define CMD_TERMINATE 0xc5
#define CMD_REPEAT 0xc6
#define CMD_DMA_EXT_WRITE 0xc7
#define CMD_DMA_EXT_READ 0xc8
#define CMD_SINGLE_WRITE 0xc9
#define CMD_SINGLE_READ 0xca
#define CMD_RESET 0xcf
#define N_OK 1
#define N_FAIL 0
#define N_RESET -1
#define N_RETRY -2
#define SPI_RESP_RETRY_COUNT (10)
#define SPI_RETRY_COUNT (10)
#define DATA_PKT_SZ_256 256
#define DATA_PKT_SZ_512 512
#define DATA_PKT_SZ_1K 1024
#define DATA_PKT_SZ_4K (4 * 1024)
#define DATA_PKT_SZ_8K (8 * 1024)
#define DATA_PKT_SZ DATA_PKT_SZ_8K
static uint8 gu8Crc_off = 0;
static sint8 nmi_spi_read(uint8 *b, uint16 sz)
{
tstrNmSpiRw spi;
spi.pu8InBuf = NULL;
spi.pu8OutBuf = b;
spi.u16Sz = sz;
return nm_bus_ioctl(NM_BUS_IOCTL_RW, &spi);
}
static sint8 nmi_spi_write(uint8 *b, uint16 sz)
{
tstrNmSpiRw spi;
spi.pu8InBuf = b;
spi.pu8OutBuf = NULL;
spi.u16Sz = sz;
return nm_bus_ioctl(NM_BUS_IOCTL_RW, &spi);
}
#ifndef USE_OLD_SPI_SW
static sint8 nmi_spi_rw(uint8 *bin, uint8 *bout, uint16 sz)
{
tstrNmSpiRw spi;
spi.pu8InBuf = bin;
spi.pu8OutBuf = bout;
spi.u16Sz = sz;
return nm_bus_ioctl(NM_BUS_IOCTL_RW, &spi);
}
#endif
/********************************************
Crc7
********************************************/
static const uint8 crc7_syndrome_table[256]
= {0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77, 0x19, 0x10, 0x0b,
0x02, 0x3d, 0x34, 0x2f, 0x26, 0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e, 0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f,
0x04, 0x0d, 0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45, 0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14, 0x63,
0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c, 0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b, 0x2c, 0x25, 0x3e, 0x37,
0x08, 0x01, 0x1a, 0x13, 0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42, 0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03,
0x0a, 0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69, 0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21, 0x4f, 0x46,
0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70, 0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38, 0x41, 0x48, 0x53, 0x5a, 0x65,
0x6c, 0x77, 0x7e, 0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36, 0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67,
0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c, 0x3b, 0x32, 0x29,
0x20, 0x1f, 0x16, 0x0d, 0x04, 0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55, 0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f,
0x14, 0x1d, 0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a, 0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52, 0x3c,
0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03, 0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b, 0x17, 0x1e, 0x05, 0x0c,
0x33, 0x3a, 0x21, 0x28, 0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60, 0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38,
0x31, 0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79};
static uint8 crc7_byte(uint8 crc, uint8 data)
{
return crc7_syndrome_table[(crc << 1) ^ data];
}
static uint8 crc7(uint8 crc, const uint8 *buffer, uint32 len)
{
while (len--)
crc = crc7_byte(crc, *buffer++);
return crc;
}
/********************************************
Spi protocol Function
********************************************/
#define CMD_DMA_WRITE 0xc1
#define CMD_DMA_READ 0xc2
#define CMD_INTERNAL_WRITE 0xc3
#define CMD_INTERNAL_READ 0xc4
#define CMD_TERMINATE 0xc5
#define CMD_REPEAT 0xc6
#define CMD_DMA_EXT_WRITE 0xc7
#define CMD_DMA_EXT_READ 0xc8
#define CMD_SINGLE_WRITE 0xc9
#define CMD_SINGLE_READ 0xca
#define CMD_RESET 0xcf
#define DATA_PKT_SZ_256 256
#define DATA_PKT_SZ_512 512
#define DATA_PKT_SZ_1K 1024
#define DATA_PKT_SZ_4K (4 * 1024)
#define DATA_PKT_SZ_8K (8 * 1024)
#define DATA_PKT_SZ DATA_PKT_SZ_8K
static sint8 spi_cmd(uint8 cmd, uint32 adr, uint32 u32data, uint32 sz, uint8 clockless)
{
uint8 bc[9];
uint8 len = 5;
sint8 result = N_OK;
bc[0] = cmd;
switch (cmd) {
case CMD_SINGLE_READ: /* single word (4 bytes) read */
bc[1] = (uint8)(adr >> 16);
bc[2] = (uint8)(adr >> 8);
bc[3] = (uint8)adr;
len = 5;
break;
case CMD_INTERNAL_READ: /* internal register read */
bc[1] = (uint8)(adr >> 8);
if (clockless)
bc[1] |= (1 << 7);
bc[2] = (uint8)adr;
bc[3] = 0x00;
len = 5;
break;
case CMD_TERMINATE: /* termination */
bc[1] = 0x00;
bc[2] = 0x00;
bc[3] = 0x00;
len = 5;
break;
case CMD_REPEAT: /* repeat */
bc[1] = 0x00;
bc[2] = 0x00;
bc[3] = 0x00;
len = 5;
break;
case CMD_RESET: /* reset */
bc[1] = 0xff;
bc[2] = 0xff;
bc[3] = 0xff;
len = 5;
break;
case CMD_DMA_WRITE: /* dma write */
case CMD_DMA_READ: /* dma read */
bc[1] = (uint8)(adr >> 16);
bc[2] = (uint8)(adr >> 8);
bc[3] = (uint8)adr;
bc[4] = (uint8)(sz >> 8);
bc[5] = (uint8)(sz);
len = 7;
break;
case CMD_DMA_EXT_WRITE: /* dma extended write */
case CMD_DMA_EXT_READ: /* dma extended read */
bc[1] = (uint8)(adr >> 16);
bc[2] = (uint8)(adr >> 8);
bc[3] = (uint8)adr;
bc[4] = (uint8)(sz >> 16);
bc[5] = (uint8)(sz >> 8);
bc[6] = (uint8)(sz);
len = 8;
break;
case CMD_INTERNAL_WRITE: /* internal register write */
bc[1] = (uint8)(adr >> 8);
if (clockless)
bc[1] |= (1 << 7);
bc[2] = (uint8)(adr);
bc[3] = (uint8)(u32data >> 24);
bc[4] = (uint8)(u32data >> 16);
bc[5] = (uint8)(u32data >> 8);
bc[6] = (uint8)(u32data);
len = 8;
break;
case CMD_SINGLE_WRITE: /* single word write */
bc[1] = (uint8)(adr >> 16);
bc[2] = (uint8)(adr >> 8);
bc[3] = (uint8)(adr);
bc[4] = (uint8)(u32data >> 24);
bc[5] = (uint8)(u32data >> 16);
bc[6] = (uint8)(u32data >> 8);
bc[7] = (uint8)(u32data);
len = 9;
break;
default:
result = N_FAIL;
break;
}
if (result) {
if (!gu8Crc_off)
bc[len - 1] = (crc7(0x7f, (const uint8 *)&bc[0], len - 1)) << 1;
else
len -= 1;
if (M2M_SUCCESS != nmi_spi_write(bc, len)) {
M2M_ERR("[nmi spi]: Failed cmd write, bus error...\n");
result = N_FAIL;
}
}
return result;
}
static sint8 spi_data_rsp(uint8 cmd)
{
uint8 len;
uint8 rsp[3];
sint8 result = N_OK;
if (!gu8Crc_off)
len = 2;
else
len = 3;
if (M2M_SUCCESS != nmi_spi_read(&rsp[0], len)) {
M2M_ERR("[nmi spi]: Failed bus error...\n");
result = N_FAIL;
goto _fail_;
}
if ((rsp[len - 1] != 0) || (rsp[len - 2] != 0xC3)) {
M2M_ERR("[nmi spi]: Failed data response read, %x %x %x\n", rsp[0], rsp[1], rsp[2]);
result = N_FAIL;
goto _fail_;
}
_fail_:
return result;
}
static sint8 spi_cmd_rsp(uint8 cmd)
{
uint8 rsp;
sint8 result = N_OK;
sint8 s8RetryCnt;
/**
Command/Control response
**/
if ((cmd == CMD_RESET) || (cmd == CMD_TERMINATE) || (cmd == CMD_REPEAT)) {
if (M2M_SUCCESS != nmi_spi_read(&rsp, 1)) {
result = N_FAIL;
goto _fail_;
}
}
/* wait for response */
s8RetryCnt = SPI_RESP_RETRY_COUNT;
do {
if (M2M_SUCCESS != nmi_spi_read(&rsp, 1)) {
M2M_ERR("[nmi spi]: Failed cmd response read, bus error...\n");
result = N_FAIL;
goto _fail_;
}
} while ((rsp != cmd) && (s8RetryCnt-- > 0));
/**
State response
**/
/* wait for response */
s8RetryCnt = SPI_RESP_RETRY_COUNT;
do {
if (M2M_SUCCESS != nmi_spi_read(&rsp, 1)) {
M2M_ERR("[nmi spi]: Failed cmd response read, bus error...\n");
result = N_FAIL;
goto _fail_;
}
} while ((rsp != 0x00) && (s8RetryCnt-- > 0));
_fail_:
return result;
}
#ifndef USE_OLD_SPI_SW
static int spi_cmd_complete(uint8_t cmd, uint32_t adr, uint8_t *b, uint32_t sz, uint8_t clockless)
{
uint8_t wb[32], rb[32];
uint8_t wix, rix;
uint32_t len2;
uint8_t rsp;
int len = 0;
int result = N_OK;
wb[0] = cmd;
switch (cmd) {
case CMD_SINGLE_READ: /* single word (4 bytes) read */
wb[1] = (uint8_t)(adr >> 16);
wb[2] = (uint8_t)(adr >> 8);
wb[3] = (uint8_t)adr;
len = 5;
break;
case CMD_INTERNAL_READ: /* internal register read */
wb[1] = (uint8_t)(adr >> 8);
if (clockless == 1)
wb[1] |= (1 << 7);
wb[2] = (uint8_t)adr;
wb[3] = 0x00;
len = 5;
break;
case CMD_TERMINATE: /* termination */
wb[1] = 0x00;
wb[2] = 0x00;
wb[3] = 0x00;
len = 5;
break;
case CMD_REPEAT: /* repeat */
wb[1] = 0x00;
wb[2] = 0x00;
wb[3] = 0x00;
len = 5;
break;
case CMD_RESET: /* reset */
wb[1] = 0xff;
wb[2] = 0xff;
wb[3] = 0xff;
len = 5;
break;
case CMD_DMA_WRITE: /* dma write */
case CMD_DMA_READ: /* dma read */
wb[1] = (uint8_t)(adr >> 16);
wb[2] = (uint8_t)(adr >> 8);
wb[3] = (uint8_t)adr;
wb[4] = (uint8_t)(sz >> 8);
wb[5] = (uint8_t)(sz);
len = 7;
break;
case CMD_DMA_EXT_WRITE: /* dma extended write */
case CMD_DMA_EXT_READ: /* dma extended read */
wb[1] = (uint8_t)(adr >> 16);
wb[2] = (uint8_t)(adr >> 8);
wb[3] = (uint8_t)adr;
wb[4] = (uint8_t)(sz >> 16);
wb[5] = (uint8_t)(sz >> 8);
wb[6] = (uint8_t)(sz);
len = 8;
break;
case CMD_INTERNAL_WRITE: /* internal register write */
wb[1] = (uint8_t)(adr >> 8);
if (clockless == 1)
wb[1] |= (1 << 7);
wb[2] = (uint8_t)(adr);
wb[3] = b[3];
wb[4] = b[2];
wb[5] = b[1];
wb[6] = b[0];
len = 8;
break;
case CMD_SINGLE_WRITE: /* single word write */
wb[1] = (uint8_t)(adr >> 16);
wb[2] = (uint8_t)(adr >> 8);
wb[3] = (uint8_t)(adr);
wb[4] = b[3];
wb[5] = b[2];
wb[6] = b[1];
wb[7] = b[0];
len = 9;
break;
default:
result = N_FAIL;
break;
}
if (result != N_OK) {
return result;
}
if (!gu8Crc_off) {
wb[len - 1] = (crc7(0x7f, (const uint8_t *)&wb[0], len - 1)) << 1;
} else {
len -= 1;
}
#define NUM_SKIP_BYTES (1)
#define NUM_RSP_BYTES (2)
#define NUM_DATA_HDR_BYTES (1)
#define NUM_DATA_BYTES (4)
#define NUM_CRC_BYTES (2)
#define NUM_DUMMY_BYTES (3)
if ((cmd == CMD_RESET) || (cmd == CMD_TERMINATE) || (cmd == CMD_REPEAT)) {
len2 = len + (NUM_SKIP_BYTES + NUM_RSP_BYTES + NUM_DUMMY_BYTES);
} else if ((cmd == CMD_INTERNAL_READ) || (cmd == CMD_SINGLE_READ)) {
if (!gu8Crc_off) {
len2 = len + (NUM_RSP_BYTES + NUM_DATA_HDR_BYTES + NUM_DATA_BYTES + NUM_CRC_BYTES + NUM_DUMMY_BYTES);
} else {
len2 = len + (NUM_RSP_BYTES + NUM_DATA_HDR_BYTES + NUM_DATA_BYTES + NUM_DUMMY_BYTES);
}
} else {
len2 = len + (NUM_RSP_BYTES + NUM_DUMMY_BYTES);
}
#undef NUM_DUMMY_BYTES
if (len2 > (sizeof(wb) / sizeof(wb[0]))) {
M2M_ERR("[nmi spi]: spi buffer size too small (%d) (%d)\n", len2, (sizeof(wb) / sizeof(wb[0])));
result = N_FAIL;
return result;
}
/* zero spi write buffers. */
for (wix = len; wix < len2; wix++) {
wb[wix] = 0;
}
rix = len;
if (nmi_spi_rw(wb, rb, len2) != M2M_SUCCESS) {
M2M_ERR("[nmi spi]: Failed cmd write, bus error...\n");
result = N_FAIL;
return result;
}
#if 0
{
int jj;
printk("--- cnd = %x, len=%d, len2=%d\n", cmd, len, len2);
for(jj=0; jj<sizeof(wb)/sizeof(wb[0]); jj++) {
if(jj >= len2) break;
if(((jj+1)%16) != 0) {
if((jj%16) == 0) {
printk("wb[%02x]: %02x ", jj, wb[jj]);
} else {
printk("%02x ", wb[jj]);
}
} else {
printk("%02x\n", wb[jj]);
}
}
printk("\n");
for(jj=0; jj<sizeof(rb)/sizeof(rb[0]); jj++) {
if(jj >= len2) break;
if(((jj+1)%16) != 0) {
if((jj%16) == 0) {
printk("rb[%02x]: %02x ", jj, rb[jj]);
} else {
printk("%02x ", rb[jj]);
}
} else {
printk("%02x\n", rb[jj]);
}
}
printk("\n");
}
#endif
/**
Command/Control response
**/
if ((cmd == CMD_RESET) || (cmd == CMD_TERMINATE) || (cmd == CMD_REPEAT)) {
rix++; /* skip 1 byte */
}
rsp = rb[rix++];
if (rsp != cmd) {
M2M_ERR("[nmi spi]: Failed cmd response, cmd (%02x), resp (%02x)\n", cmd, rsp);
result = N_FAIL;
return result;
}
/**
State response
**/
rsp = rb[rix++];
if (rsp != 0x00) {
M2M_ERR("[nmi spi]: Failed cmd state response state (%02x)\n", rsp);
result = N_FAIL;
return result;
}
if ((cmd == CMD_INTERNAL_READ) || (cmd == CMD_SINGLE_READ) || (cmd == CMD_DMA_READ) || (cmd == CMD_DMA_EXT_READ)) {
int retry;
// uint16_t crc1, crc2;
uint8_t crc[2];
/**
Data Respnose header
**/
retry = SPI_RESP_RETRY_COUNT;
do {
/* ensure there is room in buffer later to read data and crc */
if (rix < len2) {
rsp = rb[rix++];
} else {
retry = 0;
break;
}
if (((rsp >> 4) & 0xf) == 0xf)
break;
} while (retry--);
if (retry <= 0) {
M2M_ERR("[nmi spi]: Error, data read response (%02x)\n", rsp);
result = N_RESET;
return result;
}
if ((cmd == CMD_INTERNAL_READ) || (cmd == CMD_SINGLE_READ)) {
/**
Read bytes
**/
if ((rix + 3) < len2) {
b[0] = rb[rix++];
b[1] = rb[rix++];
b[2] = rb[rix++];
b[3] = rb[rix++];
} else {
M2M_ERR("[nmi spi]: buffer overrun when reading data.\n");
result = N_FAIL;
return result;
}
if (!gu8Crc_off) {
/**
Read Crc
**/
if ((rix + 1) < len2) {
crc[0] = rb[rix++];
crc[1] = rb[rix++];
} else {
M2M_ERR("[nmi spi]: buffer overrun when reading crc.\n");
result = N_FAIL;
return result;
}
}
} else if ((cmd == CMD_DMA_READ) || (cmd == CMD_DMA_EXT_READ)) {
int ix;
/* some data may be read in response to dummy bytes. */
for (ix = 0; (rix < len2) && (ix < sz);) {
b[ix++] = rb[rix++];
}
#if 0
if(ix) M2M_INFO("ttt %d %d\n", sz, ix);
#endif
sz -= ix;
if (sz > 0) {
int nbytes;
if (sz <= (DATA_PKT_SZ - ix)) {
nbytes = sz;
} else {
nbytes = DATA_PKT_SZ - ix;
}
/**
Read bytes
**/
if (nmi_spi_read(&b[ix], nbytes) != M2M_SUCCESS) {
M2M_ERR("[nmi spi]: Failed data block read, bus error...\n");
result = N_FAIL;
goto _error_;
}
/**
Read Crc
**/
if (!gu8Crc_off) {
if (nmi_spi_read(crc, 2) != M2M_SUCCESS) {
M2M_ERR("[nmi spi]: Failed data block crc read, bus error...\n");
result = N_FAIL;
goto _error_;
}
}
ix += nbytes;
sz -= nbytes;
}
/* if any data in left unread, then read the rest using normal DMA code.*/
while (sz > 0) {
int nbytes;
if (sz <= DATA_PKT_SZ) {
nbytes = sz;
} else {
nbytes = DATA_PKT_SZ;
}
/**
read data response only on the next DMA cycles not
the first DMA since data response header is already
handled above for the first DMA.
**/
/**
Data Respnose header
**/
retry = SPI_RESP_RETRY_COUNT;
do {
if (nmi_spi_read(&rsp, 1) != M2M_SUCCESS) {
M2M_ERR("[nmi spi]: Failed data response read, bus error...\n");
result = N_FAIL;
break;
}
if (((rsp >> 4) & 0xf) == 0xf)
break;
} while (retry--);
if (result == N_FAIL)
break;
/**
Read bytes
**/
if (nmi_spi_read(&b[ix], nbytes) != M2M_SUCCESS) {
M2M_ERR("[nmi spi]: Failed data block read, bus error...\n");
result = N_FAIL;
break;
}
/**
Read Crc
**/
if (!gu8Crc_off) {
if (nmi_spi_read(crc, 2) != M2M_SUCCESS) {
M2M_ERR("[nmi spi]: Failed data block crc read, bus error...\n");
result = N_FAIL;
break;
}
}
ix += nbytes;
sz -= nbytes;
}
}
}
_error_:
return result;
}
#endif
static sint8 spi_data_read(uint8 *b, uint16 sz, uint8 clockless)
{
sint16 retry, ix, nbytes;
sint8 result = N_OK;
uint8 crc[2];
uint8 rsp;
/**
Data
**/
ix = 0;
do {
if (sz <= DATA_PKT_SZ)
nbytes = sz;
else
nbytes = DATA_PKT_SZ;
/**
Data Respnose header
**/
retry = SPI_RESP_RETRY_COUNT;
do {
if (M2M_SUCCESS != nmi_spi_read(&rsp, 1)) {
M2M_ERR("[nmi spi]: Failed data response read, bus error...\n");
result = N_FAIL;
break;
}
if (((rsp >> 4) & 0xf) == 0xf)
break;
} while (retry--);
if (result == N_FAIL)
break;
if (retry <= 0) {
M2M_ERR("[nmi spi]: Failed data response read...(%02x)\n", rsp);
result = N_FAIL;
break;
}
/**
Read bytes
**/
if (M2M_SUCCESS != nmi_spi_read(&b[ix], nbytes)) {
M2M_ERR("[nmi spi]: Failed data block read, bus error...\n");
result = N_FAIL;
break;
}
if (!clockless) {
/**
Read Crc
**/
if (!gu8Crc_off) {
if (M2M_SUCCESS != nmi_spi_read(crc, 2)) {
M2M_ERR("[nmi spi]: Failed data block crc read, bus error...\n");
result = N_FAIL;
break;
}
}
}
ix += nbytes;
sz -= nbytes;
} while (sz);
return result;
}
static sint8 spi_data_write(uint8 *b, uint16 sz)
{
sint16 ix;
uint16 nbytes;
sint8 result = 1;
uint8 cmd, order, crc[2] = {0};
// uint8 rsp;
/**
Data
**/
ix = 0;
do {
if (sz <= DATA_PKT_SZ)
nbytes = sz;
else
nbytes = DATA_PKT_SZ;
/**
Write command
**/
cmd = 0xf0;
if (ix == 0) {
if (sz <= DATA_PKT_SZ)
order = 0x3;
else
order = 0x1;
} else {
if (sz <= DATA_PKT_SZ)
order = 0x3;
else
order = 0x2;
}
cmd |= order;
if (M2M_SUCCESS != nmi_spi_write(&cmd, 1)) {
M2M_ERR("[nmi spi]: Failed data block cmd write, bus error...\n");
result = N_FAIL;
break;
}
/**
Write data
**/
if (M2M_SUCCESS != nmi_spi_write(&b[ix], nbytes)) {
M2M_ERR("[nmi spi]: Failed data block write, bus error...\n");
result = N_FAIL;
break;
}
/**
Write Crc
**/
if (!gu8Crc_off) {
if (M2M_SUCCESS != nmi_spi_write(crc, 2)) {
M2M_ERR("[nmi spi]: Failed data block crc write, bus error...\n");
result = N_FAIL;
break;
}
}
ix += nbytes;
sz -= nbytes;
} while (sz);
return result;
}
/********************************************
Spi Internal Read/Write Function
********************************************/
/********************************************
Spi interfaces
********************************************/
static sint8 spi_write_reg(uint32 addr, uint32 u32data)
{
uint8 retry = SPI_RETRY_COUNT;
sint8 result = N_OK;
uint8 cmd = CMD_SINGLE_WRITE;
uint8 clockless = 0;
_RETRY_:
if (addr <= 0x30) {
/**
NMC1000 clockless registers.
**/
cmd = CMD_INTERNAL_WRITE;
clockless = 1;
} else {
cmd = CMD_SINGLE_WRITE;
clockless = 0;
}
#if defined USE_OLD_SPI_SW
result = spi_cmd(cmd, addr, u32data, 4, clockless);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd, write reg (%08x)...\n", (unsigned int)addr);
goto _FAIL_;
}
result = spi_cmd_rsp(cmd);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd response, write reg (%08x)...\n", (unsigned int)addr);
goto _FAIL_;
}
#else
result = spi_cmd_complete(cmd, addr, (uint8 *)&u32data, 4, clockless);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd, write reg (%08x)...\n", addr);
goto _FAIL_;
}
#endif
_FAIL_:
if (result != N_OK) {
nm_bsp_sleep(1);
spi_cmd(CMD_RESET, 0, 0, 0, 0);
spi_cmd_rsp(CMD_RESET);
M2M_ERR("Reset and retry %d %x %x\n", retry, addr, u32data);
nm_bsp_sleep(1);
retry--;
if (retry)
goto _RETRY_;
}
return result;
}
static sint8 nm_spi_write(uint32 addr, uint8 *buf, uint16 size)
{
sint8 result;
uint8 retry = SPI_RETRY_COUNT;
uint8 cmd = CMD_DMA_EXT_WRITE;
_RETRY_:
/**
Command
**/
#if defined USE_OLD_SPI_SW
// Workaround hardware problem with single byte transfers over SPI bus
if (size == 1)
size = 2;
result = spi_cmd(cmd, addr, 0, size, 0);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd, write block (%08x)...\n", (unsigned int)addr);
goto _FAIL_;
}
result = spi_cmd_rsp(cmd);
if (result != N_OK) {
M2M_ERR("[nmi spi ]: Failed cmd response, write block (%08x)...\n", (unsigned int)addr);
goto _FAIL_;
}
#else
result = spi_cmd_complete(cmd, addr, NULL, size, 0);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd, write block (%08x)...\n", addr);
goto _FAIL_;
}
#endif
/**
Data
**/
result = spi_data_write(buf, size);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed block data write...\n");
goto _FAIL_;
}
/**
Data RESP
**/
result = spi_data_rsp(cmd);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed block data write...\n");
goto _FAIL_;
}
_FAIL_:
if (result != N_OK) {
nm_bsp_sleep(1);
spi_cmd(CMD_RESET, 0, 0, 0, 0);
spi_cmd_rsp(CMD_RESET);
M2M_ERR("Reset and retry %d %x %d\n", retry, addr, size);
nm_bsp_sleep(1);
retry--;
if (retry)
goto _RETRY_;
}
return result;
}
static sint8 spi_read_reg(uint32 addr, uint32 *u32data)
{
uint8 retry = SPI_RETRY_COUNT;
sint8 result = N_OK;
uint8 cmd = CMD_SINGLE_READ;
uint8 tmp[4];
uint8 clockless = 0;
_RETRY_:
if (addr <= 0xff) {
/**
NMC1000 clockless registers.
**/
cmd = CMD_INTERNAL_READ;
clockless = 1;
} else {
cmd = CMD_SINGLE_READ;
clockless = 0;
}
#if defined USE_OLD_SPI_SW
result = spi_cmd(cmd, addr, 0, 4, clockless);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd, read reg (%08x)...\n", (unsigned int)addr);
goto _FAIL_;
}
result = spi_cmd_rsp(cmd);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd response, read reg (%08x)...\n", (unsigned int)addr);
goto _FAIL_;
}
/* to avoid endianess issues */
result = spi_data_read(&tmp[0], 4, clockless);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed data read...\n");
goto _FAIL_;
}
#else
result = spi_cmd_complete(cmd, addr, (uint8 *)&tmp[0], 4, clockless);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd, read reg (%08x)...\n", addr);
goto _FAIL_;
}
#endif
*u32data = tmp[0] | ((uint32)tmp[1] << 8) | ((uint32)tmp[2] << 16) | ((uint32)tmp[3] << 24);
_FAIL_:
if (result != N_OK) {
nm_bsp_sleep(1);
spi_cmd(CMD_RESET, 0, 0, 0, 0);
spi_cmd_rsp(CMD_RESET);
M2M_ERR("Reset and retry %d %x\n", retry, addr);
nm_bsp_sleep(1);
retry--;
if (retry)
goto _RETRY_;
}
return result;
}
static sint8 nm_spi_read(uint32 addr, uint8 *buf, uint16 size)
{
uint8 cmd = CMD_DMA_EXT_READ;
sint8 result;
uint8 retry = SPI_RETRY_COUNT;
#if defined USE_OLD_SPI_SW
uint8 tmp[2];
uint8 single_byte_workaround = 0;
#endif
_RETRY_:
/**
Command
**/
#if defined USE_OLD_SPI_SW
if (size == 1) {
// Workaround hardware problem with single byte transfers over SPI bus
size = 2;
single_byte_workaround = 1;
}
result = spi_cmd(cmd, addr, 0, size, 0);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd, read block (%08x)...\n", (unsigned int)addr);
goto _FAIL_;
}
result = spi_cmd_rsp(cmd);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd response, read block (%08x)...\n", (unsigned int)addr);
goto _FAIL_;
}
/**
Data
**/
if (single_byte_workaround) {
result = spi_data_read(tmp, size, 0);
buf[0] = tmp[0];
} else
result = spi_data_read(buf, size, 0);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed block data read...\n");
goto _FAIL_;
}
#else
result = spi_cmd_complete(cmd, addr, buf, size, 0);
if (result != N_OK) {
M2M_ERR("[nmi spi]: Failed cmd, read block (%08x)...\n", addr);
goto _FAIL_;
}
#endif
_FAIL_:
if (result != N_OK) {
nm_bsp_sleep(1);
spi_cmd(CMD_RESET, 0, 0, 0, 0);
spi_cmd_rsp(CMD_RESET);
M2M_ERR("Reset and retry %d %x %d\n", retry, addr, size);
nm_bsp_sleep(1);
retry--;
if (retry)
goto _RETRY_;
}
return result;
}
/********************************************
Bus interfaces
********************************************/
static void spi_init_pkt_sz(void)
{
uint32 val32;
/* Make sure SPI max. packet size fits the defined DATA_PKT_SZ. */
val32 = nm_spi_read_reg(SPI_BASE + 0x24);
val32 &= ~(0x7 << 4);
switch (DATA_PKT_SZ) {
case 256:
val32 |= (0 << 4);
break;
case 512:
val32 |= (1 << 4);
break;
case 1024:
val32 |= (2 << 4);
break;
case 2048:
val32 |= (3 << 4);
break;
case 4096:
val32 |= (4 << 4);
break;
case 8192:
val32 |= (5 << 4);
break;
}
nm_spi_write_reg(SPI_BASE + 0x24, val32);
}
sint8 nm_spi_reset(void)
{
spi_cmd(CMD_RESET, 0, 0, 0, 0);
spi_cmd_rsp(CMD_RESET);
return M2M_SUCCESS;
}
/*
* @fn nm_spi_init
* @brief Initialize the SPI
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author M. Abdelmawla
* @date 11 July 2012
* @version 1.0
*/
sint8 nm_spi_init(void)
{
uint32 chipid;
uint32 reg = 0;
/**
configure protocol
**/
gu8Crc_off = 0;
// TODO: We can remove the CRC trials if there is a definite way to reset
// the SPI to it's initial value.
if (!spi_read_reg(NMI_SPI_PROTOCOL_CONFIG, &reg)) {
/* Read failed. Try with CRC off. This might happen when module
is removed but chip isn't reset*/
gu8Crc_off = 1;
M2M_ERR("[nmi spi]: Failed internal read protocol with CRC on, retyring with CRC off...\n");
if (!spi_read_reg(NMI_SPI_PROTOCOL_CONFIG, &reg)) {
// Reaad failed with both CRC on and off, something went bad
M2M_ERR("[nmi spi]: Failed internal read protocol...\n");
return 0;
}
}
if (gu8Crc_off == 0) {
reg &= ~0xc; /* disable crc checking */
reg &= ~0x70;
reg |= (0x5 << 4);
if (!spi_write_reg(NMI_SPI_PROTOCOL_CONFIG, reg)) {
M2M_ERR("[nmi spi]: Failed internal write protocol reg...\n");
return 0;
}
gu8Crc_off = 1;
}
/**
make sure can read back chip id correctly
**/
if (!spi_read_reg(0x1000, &chipid)) {
M2M_ERR("[nmi spi]: Fail cmd read chip id...\n");
return M2M_ERR_BUS_FAIL;
}
M2M_DBG("[nmi spi]: chipid (%08x)\n", (unsigned int)chipid);
spi_init_pkt_sz();
return M2M_SUCCESS;
}
/*
* @fn nm_spi_init
* @brief DeInitialize the SPI
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author Samer Sarhan
* @date 27 Feb 2015
* @version 1.0
*/
sint8 nm_spi_deinit(void)
{
gu8Crc_off = 0;
return M2M_SUCCESS;
}
/*
* @fn nm_spi_read_reg
* @brief Read register
* @param [in] u32Addr
* Register address
* @return Register value
* @author M. Abdelmawla
* @date 11 July 2012
* @version 1.0
*/
uint32 nm_spi_read_reg(uint32 u32Addr)
{
uint32 u32Val;
spi_read_reg(u32Addr, &u32Val);
return u32Val;
}
/*
* @fn nm_spi_read_reg_with_ret
* @brief Read register with error code return
* @param [in] u32Addr
* Register address
* @param [out] pu32RetVal
* Pointer to u32 variable used to return the read value
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author M. Abdelmawla
* @date 11 July 2012
* @version 1.0
*/
sint8 nm_spi_read_reg_with_ret(uint32 u32Addr, uint32 *pu32RetVal)
{
sint8 s8Ret;
s8Ret = spi_read_reg(u32Addr, pu32RetVal);
if (N_OK == s8Ret)
s8Ret = M2M_SUCCESS;
else
s8Ret = M2M_ERR_BUS_FAIL;
return s8Ret;
}
/*
* @fn nm_spi_write_reg
* @brief write register
* @param [in] u32Addr
* Register address
* @param [in] u32Val
* Value to be written to the register
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author M. Abdelmawla
* @date 11 July 2012
* @version 1.0
*/
sint8 nm_spi_write_reg(uint32 u32Addr, uint32 u32Val)
{
sint8 s8Ret;
s8Ret = spi_write_reg(u32Addr, u32Val);
if (N_OK == s8Ret)
s8Ret = M2M_SUCCESS;
else
s8Ret = M2M_ERR_BUS_FAIL;
return s8Ret;
}
/*
* @fn nm_spi_read_block
* @brief Read block of data
* @param [in] u32Addr
* Start address
* @param [out] puBuf
* Pointer to a buffer used to return the read data
* @param [in] u16Sz
* Number of bytes to read. The buffer size must be >= u16Sz
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author M. Abdelmawla
* @date 11 July 2012
* @version 1.0
*/
sint8 nm_spi_read_block(uint32 u32Addr, uint8 *puBuf, uint16 u16Sz)
{
sint8 s8Ret;
s8Ret = nm_spi_read(u32Addr, puBuf, u16Sz);
if (N_OK == s8Ret)
s8Ret = M2M_SUCCESS;
else
s8Ret = M2M_ERR_BUS_FAIL;
return s8Ret;
}
/*
* @fn nm_spi_write_block
* @brief Write block of data
* @param [in] u32Addr
* Start address
* @param [in] puBuf
* Pointer to the buffer holding the data to be written
* @param [in] u16Sz
* Number of bytes to write. The buffer size must be >= u16Sz
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author M. Abdelmawla
* @date 11 July 2012
* @version 1.0
*/
sint8 nm_spi_write_block(uint32 u32Addr, uint8 *puBuf, uint16 u16Sz)
{
sint8 s8Ret;
s8Ret = nm_spi_write(u32Addr, puBuf, u16Sz);
if (N_OK == s8Ret)
s8Ret = M2M_SUCCESS;
else
s8Ret = M2M_ERR_BUS_FAIL;
return s8Ret;
}
#endif