2025-02-15 11:05:28 -05:00

742 lines
16 KiB
C

/**
*
* \file
*
* \brief This module contains WINC3400 ASIC specific internal APIs.
*
* Copyright (c) 2017-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*/
#include "common/include/nm_common.h"
#include "driver/source/nmbus.h"
#include "bsp/include/nm_bsp.h"
#include "driver/source/nmasic.h"
#define NMI_GLB_RESET_0 (NMI_PERIPH_REG_BASE + 0x400)
#define NMI_INTR_REG_BASE (NMI_PERIPH_REG_BASE + 0xa00)
#define NMI_PIN_MUX_0 (NMI_PERIPH_REG_BASE + 0x408)
#define NMI_INTR_ENABLE (NMI_INTR_REG_BASE)
#define GET_UINT32(X,Y) (X[0+Y] + ((uint32)X[1+Y]<<8) + ((uint32)X[2+Y]<<16) +((uint32)X[3+Y]<<24))
#define TIMEOUT (2000)
#define M2M_DISABLE_PS 0xD0UL
/* Assume initially we're dealing with D0 - we will try other addresses if this
* fails - the addresses are as follows:
* 0x13 - for D0
* 0x0F - for B0
* 0x0E - for A0
*/
static uint32 clk_status_reg_adr = 0x13;
sint8 chip_apply_conf(uint32 u32Conf)
{
sint8 ret = M2M_SUCCESS;
uint32 val32 = u32Conf;
#ifdef __ENABLE_PMU__
val32 |= rHAVE_USE_PMU_BIT;
#endif
#ifdef __ENABLE_SLEEP_CLK_SRC_RTC__
val32 |= rHAVE_SLEEP_CLK_SRC_RTC_BIT;
#elif defined __ENABLE_SLEEP_CLK_SRC_XO__
val32 |= rHAVE_SLEEP_CLK_SRC_XO_BIT;
#endif
#ifdef __ENABLE_EXT_PA_INV_TX_RX__
val32 |= rHAVE_EXT_PA_INV_TX_RX;
#endif
#ifdef __ENABLE_LEGACY_RF_SETTINGS__
val32 |= rHAVE_LEGACY_RF_SETTINGS;
#endif
#ifdef __DISABLE_FIRMWARE_LOGS__
val32 |= rHAVE_LOGS_DISABLED_BIT;
#endif
do {
nm_write_reg(rNMI_GP_REG_1, val32);
if(val32 != 0) {
uint32 reg = 0;
ret = nm_read_reg_with_ret(rNMI_GP_REG_1, &reg);
if(ret == M2M_SUCCESS) {
if(reg == val32)
break;
}
} else {
break;
}
} while(1);
return M2M_SUCCESS;
}
/**
* @fn nm_clkless_wake
* @brief Wakeup the chip using clockless registers
* @return M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure
* @author Samer Sarhan
* @date 06 June 2014
* @version 1.0
*/
sint8 nm_clkless_wake(void)
{
sint8 ret = M2M_SUCCESS;
uint32 reg, clk_status_reg,trials = 0;
uint32 keeptrying = 200;
/* wait 1ms, spi data read */
nm_bsp_sleep(1);
ret = nm_read_reg_with_ret(0x1, &reg);
if(ret != M2M_SUCCESS) {
M2M_ERR("Bus error (1). Wake up failed\n");
return ret;
}
/*
* At this point, I am not sure whether it is B0 or A0
* If B0, then clks_enabled bit exists in register 0xf
* If A0, then clks_enabled bit exists in register 0xe
*/
do
{
/* Set bit 1 */
nm_write_reg(0x1, reg | (1 << 1));
// Search for the correct (clock status) register address
do
{
if (keeptrying) --keeptrying;
/* wait 1ms, spi data read */
nm_bsp_sleep(1);
ret = nm_read_reg_with_ret(clk_status_reg_adr, &clk_status_reg);
if (ret != M2M_SUCCESS || (ret == M2M_SUCCESS && clk_status_reg == 0)) {
switch (clk_status_reg_adr) {
case 0x13: clk_status_reg_adr = 0x0F; break;
case 0x0F: clk_status_reg_adr = 0x0E; break;
default: clk_status_reg_adr = 0x00; break;
}
}
else
break; // we have found the correct register, break out of the search
} while (clk_status_reg_adr && keeptrying);
if (0 == clk_status_reg_adr) {
M2M_ERR("Bus error (2). Wake up failed\n");
return ret;
}
// in case of clocks off, wait 2ms, and check it again.
// if still off, wait for another 2ms, for a total wait of 6ms.
// If still off, redo the wake up sequence
trials = 0;
while( ((clk_status_reg & 0x4) == 0) && (((++trials) %3) == 0) && keeptrying)
{
--keeptrying;
/* Wait for the chip to stabilize*/
nm_bsp_sleep(2);
// Make sure chip is awake. This is an extra step that can be removed
// later to avoid the bus access overhead
nm_read_reg_with_ret(clk_status_reg_adr, &clk_status_reg);
if ((clk_status_reg & 0x4) == 0)
{
M2M_ERR("clocks still OFF. Wake up failed\n");
}
}
// in case of failure, Reset the wakeup bit to introduce a new edge on the next loop
if((clk_status_reg & 0x4) == 0)
{
// Reset bit 0
nm_write_reg(0x1, reg | (1 << 1));
}
} while((clk_status_reg & 0x4) == 0 && keeptrying);
if (!keeptrying)
{
M2M_ERR("Wake up failed - out of retries\n");
ret = M2M_ERR_INIT;
}
return ret;
}
void chip_idle(void)
{
uint32 reg =0;
nm_read_reg_with_ret(0x1, &reg);
if(reg&0x2)
{
reg &=~(1 << 1);
nm_write_reg(0x1, reg);
}
}
void enable_rf_blocks(void)
{
nm_write_reg(0x6, 0xdb);
nm_write_reg(0x7, 0x6);
nm_bsp_sleep(10);
nm_write_reg(0x1480, 0);
nm_write_reg(0x1484, 0);
nm_bsp_sleep(10);
nm_write_reg(0x6, 0x0);
nm_write_reg(0x7, 0x0);
}
sint8 enable_interrupts(void)
{
uint32 reg;
sint8 ret;
/**
interrupt pin mux select
**/
ret = nm_read_reg_with_ret(NMI_PIN_MUX_0, &reg);
if (M2M_SUCCESS != ret) {
return M2M_ERR_BUS_FAIL;
}
reg |= ((uint32) 1 << 8);
ret = nm_write_reg(NMI_PIN_MUX_0, reg);
if (M2M_SUCCESS != ret) {
return M2M_ERR_BUS_FAIL;
}
/**
interrupt enable
**/
ret = nm_read_reg_with_ret(NMI_INTR_ENABLE, &reg);
if (M2M_SUCCESS != ret) {
return M2M_ERR_BUS_FAIL;
}
reg |= ((uint32) 1 << 16);
ret = nm_write_reg(NMI_INTR_ENABLE, reg);
if (M2M_SUCCESS != ret) {
return M2M_ERR_BUS_FAIL;
}
return M2M_SUCCESS;
}
sint8 cpu_start(void) {
uint32 reg;
sint8 ret;
/**
reset regs
*/
nm_write_reg(BOOTROM_REG,0);
nm_write_reg(NMI_STATE_REG,0);
nm_write_reg(NMI_REV_REG,0);
/**
Go...
**/
ret = nm_read_reg_with_ret(0x1118, &reg);
if (M2M_SUCCESS != ret) {
ret = M2M_ERR_BUS_FAIL;
M2M_ERR("[nmi start]: fail read reg 0x1118 ...\n");
}
reg |= (1 << 0);
ret = nm_write_reg(0x1118, reg);
ret = nm_write_reg(0x150014, 0x1);
ret += nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
if ((reg & (1ul << 10)) == (1ul << 10)) {
reg &= ~(1ul << 10);
ret += nm_write_reg(NMI_GLB_RESET_0, reg);
}
reg |= (1ul << 10);
ret += nm_write_reg(NMI_GLB_RESET_0, reg);
nm_bsp_sleep(1); /* TODO: Why bus error if this delay is not here. */
return ret;
}
uint32 nmi_get_chipid(void)
{
static uint32 chipid = 0;
if (chipid == 0) {
uint32 rfrevid;
if((nm_read_reg_with_ret(0x1000, &chipid)) != M2M_SUCCESS) {
chipid = 0;
return 0;
}
if((nm_read_reg_with_ret(0x13f4, &rfrevid)) != M2M_SUCCESS) {
chipid = 0;
return 0;
}
if(chipid == 0x1002a0) {
if (rfrevid == 0x1) { /* 1002A0 */
} else /* if (rfrevid == 0x2) */ { /* 1002A1 */
chipid = 0x1002a1;
}
} else if(chipid == 0x1002b0) {
if(rfrevid == 3) { /* 1002B0 */
} else if(rfrevid == 4) { /* 1002B1 */
chipid = 0x1002b1;
} else /* if(rfrevid == 5) */ { /* 1002B2 */
chipid = 0x1002b2;
}
} else if(chipid == 0x1000f0) {
/* For 3400, the WiFi chip ID register reads 0x1000f0.
* Therefore using BT chip ID register here which should read 0x3000D0
*/
#define rBT_CHIP_ID_REG (0x3b0000)
if((nm_read_reg_with_ret(rBT_CHIP_ID_REG, &chipid)) != M2M_SUCCESS) {
chipid = 0;
return 0;
}
if(chipid == 0x3000d0) {
if(rfrevid == 6) {
chipid = 0x3000d1;
}
else if(rfrevid == 2) {
chipid = 0x3000d2;
}
}
}
//#define PROBE_FLASH
#ifdef PROBE_FLASH
if(chipid) {
UWORD32 flashid;
flashid = probe_spi_flash();
if((chipid & 0xf00000) == 0x300000) {
if(flashid == 0x1440ef) {
chipid &= ~(0x0f0000);
chipid |= 0x040000;
}
} else {
if(flashid == 0x1230ef) {
chipid &= ~(0x0f0000);
chipid |= 0x050000;
}
if(flashid == 0xc21320c2) {
chipid &= ~(0x0f0000);
chipid |= 0x050000;
}
}
}
#else
/*M2M is by default have SPI flash*/
if((chipid & 0xf00000) == 0x300000) {
chipid &= ~(0x0f0000);
chipid |= 0x040000;
} else {
chipid &= ~(0x0f0000);
chipid |= 0x050000;
}
#endif /* PROBE_FLASH */
}
return chipid;
}
uint32 nmi_get_rfrevid(void)
{
uint32 rfrevid;
if((nm_read_reg_with_ret(0x13f4, &rfrevid)) != M2M_SUCCESS) {
rfrevid = 0;
return 0;
}
return rfrevid;
}
void restore_pmu_settings_after_global_reset(void)
{
/*
* Must restore PMU register value after
* global reset if PMU toggle is done at
* least once since the last hard reset.
*/
if(REV(nmi_get_chipid()) >= REV_2B0) {
nm_write_reg(0x1e48, 0xb78469ce);
}
}
void nmi_update_pll(void)
{
uint32 pll;
pll = nm_read_reg(0x1428);
pll &= ~0x1ul;
nm_write_reg(0x1428, pll);
pll |= 0x1ul;
nm_write_reg(0x1428, pll);
}
void nmi_set_sys_clk_src_to_xo(void)
{
uint32 val32;
/* Switch system clock source to XO. This will take effect after nmi_update_pll(). */
val32 = nm_read_reg(0x141c);
val32 |= (1 << 2);
nm_write_reg(0x141c, val32);
/* Do PLL update */
nmi_update_pll();
}
sint8 chip_wake(void)
{
sint8 ret = M2M_SUCCESS;
ret = nm_clkless_wake();
if(ret != M2M_SUCCESS) return ret;
// enable_rf_blocks(); MERGEBUG: TEMPORARILY DISABLING
return ret;
}
sint8 chip_reset_and_cpu_halt(void)
{
sint8 ret = M2M_SUCCESS;
uint32 reg = 0;
ret = chip_wake();
if(ret != M2M_SUCCESS) {
return ret;
}
chip_reset();
ret = nm_read_reg_with_ret(0x1118, &reg);
if (M2M_SUCCESS != ret) {
ret = M2M_ERR_BUS_FAIL;
M2M_ERR("[nmi start]: fail read reg 0x1118 ...\n");
}
reg |= (1 << 0);
ret = nm_write_reg(0x1118, reg);
ret += nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
if ((reg & (1ul << 10)) == (1ul << 10)) {
reg &= ~(1ul << 10);
ret += nm_write_reg(NMI_GLB_RESET_0, reg);
ret += nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
}
#if 0
reg |= (1ul << 10);
ret += nm_write_reg(NMI_GLB_RESET_0, reg);
ret += nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
#endif
nm_write_reg(BOOTROM_REG,0);
nm_write_reg(NMI_STATE_REG,0);
nm_write_reg(NMI_REV_REG,0);
nm_write_reg(NMI_PIN_MUX_0, 0x11111000);
return ret;
}
sint8 chip_reset(void)
{
sint8 ret = M2M_SUCCESS;
#if 0
// MERGEBUG: TODO: This causes serial trace from the chip to be garbled - investigate
#ifndef CONF_WINC_USE_UART
nmi_set_sys_clk_src_to_xo();
#endif
#endif
ret += nm_write_reg(NMI_GLB_RESET_0, 0);
nm_bsp_sleep(50);
#ifndef CONF_WINC_USE_UART
restore_pmu_settings_after_global_reset();
#endif
return ret;
}
sint8 wait_for_bootrom(uint8 arg)
{
sint8 ret = M2M_SUCCESS;
uint32 reg = 0, cnt = 0;
reg = 0;
while(1) {
reg = nm_read_reg(0x1014); /* wait for efuse loading done */
if (reg & 0x80000000) {
break;
}
nm_bsp_sleep(1); /* TODO: Why bus error if this delay is not here. */
}
reg = nm_read_reg(M2M_WAIT_FOR_HOST_REG);
reg &= 0x1;
/* check if waiting for the host will be skipped or not */
if(reg == 0)
{
reg = 0;
while(reg != M2M_FINISH_BOOT_ROM)
{
nm_bsp_sleep(1);
reg = nm_read_reg(BOOTROM_REG);
if(++cnt > TIMEOUT)
{
M2M_DBG("failed to load firmware from flash.\n");
ret = M2M_ERR_INIT;
goto ERR2;
}
}
}
if(2 == arg) {
nm_write_reg(NMI_REV_REG, M2M_ATE_FW_START_VALUE);
} else {
/*bypass this step*/
}
if(REV(nmi_get_chipid()) == REV_3A0)
{
chip_apply_conf(rHAVE_USE_PMU_BIT);
}
else
{
chip_apply_conf(0);
}
nm_write_reg(BOOTROM_REG,M2M_START_FIRMWARE);
#ifdef __ROM_TEST__
rom_test();
#endif /* __ROM_TEST__ */
ERR2:
return ret;
}
sint8 wait_for_firmware_start(uint8 arg)
{
sint8 ret = M2M_SUCCESS;
uint32 reg = 0, cnt = 0;
volatile uint32 regAddress = NMI_STATE_REG;
volatile uint32 checkValue = M2M_FINISH_INIT_STATE;
if(2 == arg) {
regAddress = NMI_REV_REG;
checkValue = M2M_ATE_FW_IS_UP_VALUE;
} else {
/*bypass this step*/
}
while (checkValue != reg)
{
nm_bsp_sleep(2); /* TODO: Why bus error if this delay is not here. */
M2M_DBG("%x %x %x\n",(unsigned int)nm_read_reg(0x108c),(unsigned int)nm_read_reg(0x108c),(unsigned int)nm_read_reg(0x14A0));
if (nm_read_reg_with_ret(regAddress, &reg) != M2M_SUCCESS)
{
// ensure reg != checkValue
reg = !checkValue;
}
if(++cnt > TIMEOUT)
{
M2M_DBG("Time out for wait firmware Run\n");
ret = M2M_ERR_INIT;
goto ERR;
}
}
if(M2M_FINISH_INIT_STATE == checkValue)
{
nm_write_reg(NMI_STATE_REG, 0);
}
ERR:
return ret;
}
sint8 chip_deinit(void)
{
uint32 reg = 0;
sint8 ret;
uint8 timeout = 10;
/**
stop the firmware, need a re-download
**/
ret = nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
if (ret != M2M_SUCCESS) {
M2M_ERR("failed to de-initialize\n");
}
reg &= ~(1 << 10);
ret = nm_write_reg(NMI_GLB_RESET_0, reg);
if (ret != M2M_SUCCESS) {
M2M_ERR("Error while writing reg\n");
return ret;
}
do {
ret = nm_read_reg_with_ret(NMI_GLB_RESET_0, &reg);
if (ret != M2M_SUCCESS) {
M2M_ERR("Error while reading reg\n");
return ret;
}
/*Workaround to ensure that the chip is actually reset*/
if ((reg & (1 << 10))) {
M2M_DBG("Bit 10 not reset retry %d\n", timeout);
reg &= ~(1 << 10);
ret = nm_write_reg(NMI_GLB_RESET_0, reg);
timeout--;
} else {
break;
}
} while (timeout);
return ret;
}
#ifdef CONF_PERIPH
sint8 set_gpio_dir(uint8 gpio, uint8 dir)
{
uint32 val32;
sint8 ret;
ret = nm_read_reg_with_ret(0x20108, &val32);
if(ret != M2M_SUCCESS) goto _EXIT;
if(dir) {
val32 |= (1ul << gpio);
} else {
val32 &= ~(1ul << gpio);
}
ret = nm_write_reg(0x20108, val32);
_EXIT:
return ret;
}
sint8 set_gpio_val(uint8 gpio, uint8 val)
{
uint32 val32;
sint8 ret;
ret = nm_read_reg_with_ret(0x20100, &val32);
if(ret != M2M_SUCCESS) goto _EXIT;
if(val) {
val32 |= (1ul << gpio);
} else {
val32 &= ~(1ul << gpio);
}
ret = nm_write_reg(0x20100, val32);
_EXIT:
return ret;
}
sint8 get_gpio_val(uint8 gpio, uint8* val)
{
uint32 val32;
sint8 ret;
ret = nm_read_reg_with_ret(0x20104, &val32);
if(ret != M2M_SUCCESS) goto _EXIT;
*val = (uint8)((val32 >> gpio) & 0x01);
_EXIT:
return ret;
}
sint8 pullup_ctrl(uint32 pinmask, uint8 enable)
{
sint8 s8Ret;
uint32 val32;
s8Ret = nm_read_reg_with_ret(0x142c, &val32);
if(s8Ret != M2M_SUCCESS) {
M2M_ERR("[pullup_ctrl]: failed to read\n");
goto _EXIT;
}
if(enable) {
val32 &= ~pinmask;
} else {
val32 |= pinmask;
}
s8Ret = nm_write_reg(0x142c, val32);
if(s8Ret != M2M_SUCCESS) {
M2M_ERR("[pullup_ctrl]: failed to write\n");
goto _EXIT;
}
_EXIT:
return s8Ret;
}
#endif /* CONF_PERIPH */
sint8 nmi_get_otp_mac_address(uint8 *pu8MacAddr, uint8 * pu8IsValid)
{
sint8 ret;
uint32 u32RegValue;
uint8 mac[6];
tstrGpRegs strgp = {0};
ret = nm_read_reg_with_ret(rNMI_GP_REG_0, &u32RegValue);
if(ret != M2M_SUCCESS) goto _EXIT_ERR;
ret = nm_read_block(u32RegValue|0x30000,(uint8*)&strgp,sizeof(tstrGpRegs));
if(ret != M2M_SUCCESS) goto _EXIT_ERR;
u32RegValue = strgp.u32Mac_efuse_mib;
if(!EFUSED_MAC(u32RegValue)) {
M2M_DBG("Default MAC\n");
m2m_memset(pu8MacAddr, 0, 6);
goto _EXIT_ERR;
}
M2M_DBG("OTP MAC\n");
u32RegValue >>=16;
ret = nm_read_block(u32RegValue|0x30000, mac, 6);
m2m_memcpy(pu8MacAddr,mac,6);
if(pu8IsValid) *pu8IsValid = 1;
return ret;
_EXIT_ERR:
if(pu8IsValid) *pu8IsValid = 0;
return ret;
}
sint8 nmi_get_mac_address(uint8 *pu8MacAddr)
{
sint8 ret;
uint32 u32RegValue;
uint8 mac[6];
tstrGpRegs strgp = {0};
ret = nm_read_reg_with_ret(rNMI_GP_REG_0, &u32RegValue);
if(ret != M2M_SUCCESS) goto _EXIT_ERR;
ret = nm_read_block(u32RegValue|0x30000,(uint8*)&strgp,sizeof(tstrGpRegs));
if(ret != M2M_SUCCESS) goto _EXIT_ERR;
u32RegValue = strgp.u32Mac_efuse_mib;
u32RegValue &=0x0000ffff;
ret = nm_read_block(u32RegValue|0x30000, mac, 6);
m2m_memcpy(pu8MacAddr, mac, 6);
return ret;
_EXIT_ERR:
return ret;
}